首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Muscle ubiquinone in healthy physically active males   总被引:4,自引:0,他引:4  
Thirty-five (35) healthy physically active males had muscle biopsies taken from their vastus lateralis muscle to analyze for ubiquinone (vitamin Q, UQ), oxidative (muscle fiber types expressed as %ST and citrate synthase activity, CS) and fermentative (lactate dehydrogenase, LD) profiles. Graded cycle ergometer exercise to determine the intensities corresponding to onset of blood lactate accumulation set to 4.0 mmol × 1–1 (WOBLA) and symptom limited exercise (maximal, WSL) were also undertaken. Eleven (11) subjects had also recently participated in a marathon race. UQ was positively related to CS (r = 0.67, p < 0.001) and %ST (r = 0.60, p < 0.001) but not to LD. UQ was also positively related to exercise capacity and/or marathon performance (e.g. WOBLA × kg–1 BW, r = 0.70, p < 0.001). It was suggested that muscle UQ allocation in man was related to variables describing molecular oxygen availability, respiratory activity and oxidative energy releasing processes but not to fermentation activity. UQ allocation to ST fibers/CS activity was suggested to be due to the double role of UQ: 1) as a mitochondrial coenzyme (CoQ10) and 2) as a nonspecific antioxidant.  相似文献   

2.
The development of poultry muscle fibers after hatching is closely related to meat quality and production efficiency. It is necessary to identify functional modules (groups of functionally related genes) related to muscle development at different developmental stages, and to investigate their relationships based on the weighted gene co-expression network analysis (WGCNA) methods. Accordingly, we investigated the co-expression associations between genes related to chicken breast muscle at four different developmental stages (between 2 and 14 weeks of age), and systematically analyzed the network topology in Jinmao Hua chicken. As a result, 2341 differentially expressed genes were identified and subjected to co-expression analysis. Four modules were identified to be related to a particular growth stage for the development of breast muscle. A series of genes with the highest connectivity were identified in the pink (2 weeks), yellow (6 weeks), green (10 weeks) and black modules (14 weeks), respectively, and visualized by Cytoscape. These hub genes (FGF, MAPKAPK5, NRG1, SCD, ACSL1, PPAR etc.) were mainly enriched in 15 pathways, such as MAPK signaling pathway, NRG/ErbB signaling pathway, and insulin signaling pathway. They shared biological functions related to development of breast muscle and adipogenesis. This is the first study of gene network with different stages of muscle development in Jinmao Hua chicken to observe co-expression patterns. It may contribute to the underlied molecular mechanisms of chicken breast muscle development.  相似文献   

3.
4.
骨骼肌由异质性的肌纤维组成,不同类型的肌纤维具有不同的形态、代谢、生理和生化特性.根据不同肌纤维中表达的特异肌球蛋白重链亚型可将成体哺乳动物骨骼肌纤维分为4类,即Ⅰ,Ⅱa,Ⅱx和Ⅱb型.骨骼肌保持高度可塑性,当机体受到某些生理或病理刺激时,骨骼肌为了适应需要,通过激活胞内相关信号通路改变肌纤维特异基因的表达从而诱发肌纤维类型的转化.本文综述了细胞内参与调控肌纤维类型转化的多条重要信号通路,如Ca2+信号通路,Ras/MAPK信号通路及多种转录调节因子,辅激活因子和抑制子等,为改善肉类品质,提高运动训练效果及治疗肌肉相关疾病奠定了理论基础.  相似文献   

5.
The purpose of the present study was to verify the relationships between indicators of body Eat content and specific characteristics of skeletal muscle in a large sample of men and women. Six skinfold thicknesses (σ6S) and maximal oxygen uptake (VO2 max) were measured in 348 Caucasian subjects (149 women and 199 men). Fiber type proportions (type I, type IIA, and type IIB) and activity levels of marker enzymes for the Krebs cycle (malate dehydrogenase, MDH) and for the fatty acid oxidation (3-hydroxya-cyl CoA dehydrogenase, HADH) pathways were determined in vastus lateralis muscle samples. No significant correlation was found between fiber type proportions and σ6S. Significant and negative correlations were, however, obtained in both genders between the σ6S and MDH enzyme activity (r = ?0.23; p<0.01), but not between the σ6S and HADH enzyme activity. When individuals with low and high amount of subcutaneous fat but paired for VO2max were compared, vastus lateralis of fat men exhibited the same proportion of type I fiber (38.6 ± 10.3 vs 38.5 ± 13.4 %) and HADH activity level (3.43 ± 1.05 vs. 334 ± 0.81 U/g), but had about 20% less MDH enzyme activity than vastus lateralis of leaner men (158 ± 35 vs. 198 ± 43 U/g;p<0.05). No difference was found in any of these muscle phenotypes when comparisons were made between women with low and high amount of subcutaneous fat but also paired for VO2max. Moreover, no relations were observed between skeletal muscle fiber type proportion or metabolic markers with relative subcutaneous fat distribution. In conclusion, these results indicate that the proportion of fiber type of skeletal muscle is not a determinant of body fat content or fat distribution in men and women. However, the results of the present study suggest, at least in men, that a low oxidative capacity of skeletal muscle, undetected by muscle fiber typing, is associated with an augmented body fat content.  相似文献   

6.
Vitamin A (VA) deficiency remains prevalent in resource limited areas. Using Citrobacter rodentium infection in mice as a model for diarrheal diseases, previous reports showed reduced pathogen clearance and survival due to vitamin A deficient (VAD) status. To characterize the impact of preexisting VA deficiency on gene expression patterns in the intestines, and to discover novel target genes in VA-related biological pathways, VA deficiency in mice were induced by diet. Total mRNAs were extracted from small intestine (SI) and colon, and sequenced. Differentially Expressed Gene (DEG), Gene Ontology (GO) enrichment, and co-expression network analyses were performed. DEGs compared between VAS and VAD groups detected 49 SI and 94 colon genes. By GO information, SI DEGs were significantly enriched in categories relevant to retinoid metabolic process, molecule binding, and immune function. Three co-expression modules showed significant correlation with VA status in SI; these modules contained four known retinoic acid targets. In addition, other SI genes of interest (e.g., Mbl2, Cxcl14, and Nr0b2) in these modules were suggested as new candidate genes regulated by VA. Furthermore, our analysis showed that markers of two cell types in SI, mast cells and Tuft cells, were significantly altered by VA status. In colon, “cell division” was the only enriched category and was negatively associated with VA. Thus, these data suggested that SI and colon have distinct networks under the regulation of dietary VA, and that preexisting VA deficiency could have a significant impact on the host response to a variety of disease conditions.  相似文献   

7.
Seven (7) males with effort angina and listed for coronary by-pass surgery had muscle biopsies taken from their vastus lateralis muscle for determination of muscle fiber types (%ST), ubiquinone (vitamin Q, UQ), oxidative and fermentative enzyme activities. Graded cycle ergometer exercise to determine intensities corresponding to onset of blood lactate accumulation set to 2.0 nimol × 1–1 (WOSLA) and symptom limited exercise (maximal, WSL) were also undertaken. WOBLA was positively related to %ST (r = 0.92, p < 0.001). %ST was on the other hand inversely related to UQ (r =–0.82, p < 0.05), the heart specific LD subunit LD-H (r =–0.96, p < 0.001), the isozyme LD3 as the fraction of LD (%LD3) (r=–0.93, p < 0.01), and the CK isozyme CKMB as the fraction of CK (%CKMB) (r = –0.88, p < 0.05). It was suggested that muscle UQ depletion in the patients was related to molecular oxygen and free oxygen radical formation. The lack of antioxidants then caused a radical trauma specifically to the ST fiber and their mitochondria. This could be a cause and-effect explanation for the selective ST fiber downregulation in effort angina and heart failure in general.  相似文献   

8.
To test how differences in locomotor behaviors may be reflected in muscle fiber-type diversity within anurans, a comparison of hindlimb muscles between the powerful terrestrial hopper, Rana catesbeiana, and the tree frog, Litoria caerulea, was done. One postural muscle (tibialis posticus, TP) and one primary hopping muscle (plantaris longus, PL), were characterized to identify muscle fiber types using standard histochemical methods. In addition, spectophotometric analysis of activity levels of the oxidative enzyme citrate synthase (CS) and the glycolytic enzyme lactate dehydrogenase (LDH) were done in each muscle. In spite of presumed differences in behavior between the species, we found no significant differences in the proportions of the identified fiber types when the muscles were compared across species. In addition, there were no significant differences in the proportions of the different fiber types between the postural versus phasic muscles within species. Within Rana, the postural muscle (TP) had greater oxidative capacity (as measured by CS activity) than did the phasic muscle (PL). Both muscles had equivalent LDH activities. Within Litoria, PL and TP did not differ in either LDH or CS activities. Both PL and TP of Litoria had less LDH activity and greater CS activity than their homologs in Rana. Thus, in spite of the uniform populations of fiber types between muscles and species, the metabolic diversity based on enzyme activity is consistent with behavioral differences between the species. These results suggest that the range of functional diversity within fiber types may be very broad in anurans, and histochemical fiber typing alone is not a clear indicator of their metabolic or functional properties.  相似文献   

9.
10.
11.
Plectin (M(r) > 500,000) is a versatile and widely expressed cytolinker protein. In striated muscle it is predominantly found at the Z-disc level where it colocalizes with the intermediate filament protein desmin. Both proteins show altered labeling patterns in tissues of muscular dystrophy patients. Moreover, mutations in the plectin gene lead to the autosomal recessive human disorder epidermolysis bullosa simplex with muscular dystrophy, and defects in the desmin gene have been shown to cause familiar cardiac and skeletal myopathy. Since intermediate filaments (IFs) in striated muscle tissue have been found to be intimately associated with mitochondria, we investigated whether plectin is involved in this association. Using postembedding immunogold labeling of Lowicryl sections and immunogold labeling of ultrathin cryosections, we show that plectin is associated with desmin IFs linking myofibrils to mitochondria at the level of the Z-disc and along the entire length of the sarcomere. The localization of plectin label at the mitochondrial membrane itself was consistent with a putative linker function of plectin between desmin IFs and the mitochondrial surface. In mitochondrion-rich muscle fibers, both plectin and desmin were part of an ordered arrangement of mitochondrial side branches, which wound around myofibrils adjacent to the Z-discs and were anchored into a filamentous network transversing from one fibril to the other. The association of mitochondria with plectin and IFs was seen also in tissues without regular distribution patterns of mitochondria, such as heart muscle and neonatal skeletal muscle tissues. These data were supplemented with in vitro binding assays showing direct interaction of plectin with desmin via its carboxy-terminal IF-binding domain. As a cytolinker protein associated with mitochondria and desmin IFs, plectin could play an important role in the positioning and shape formation, in particular branching, of mitochondrial organelles in striated muscle tissues.  相似文献   

12.
Muscle contains the largest reservoir of glycogen (Glyc), a depot that is closely regulated and with influence on insulin sensitivity. The current study examines muscle Glyc in type 2 diabetes mellitus (T2DM) and obesity and with respect to muscle fiber type, intramyocellular lipid content (IMCL), and mitochondrial function (oxidative enzyme activity; OX-Enz). There is increasing interest in the relation of IMCL and mitochondrial dysfunction with insulin resistance (IR), yet the association with muscle Glyc has not been examined with regard to these parameters. Using a quantitative histological approach specific to muscle fiber types, we assessed muscle Glyc, IMCL, and OX-Enz in vastus lateralis obtained by percutaneous biopsy in lean nondiabetic (L; n = 16), obese nondiabetic (Ob; n = 15), and T2DM volunteers (n = 14). Insulin sensitivity was estimated using homeostasis model assessment (HOMA)-IR. Muscle Glyc was reduced in T2DM, a deficit evident for type IIa fibers, yet minor in types I and IIb fibers. Low Glyc in T2DM correlated with fasting hyperglycemia. Also, in T2DM and Ob, there was significantly higher IMCL and lower OX-Enz in all fiber types. The IMCL-to-OX-Enz ratio, especially for type I fibers, correlated strongly with IR. Similarly, a Glyc-to-OX-Enz ratio correlated with IR, particularly for type IIb fibers. This ratio tended to be higher in Ob and T2DM. In summary, there is decreased muscle Glyc in T2DM yet a disproportional Glyc-to-OX-Enz relationship that is related to IR, although not as robustly as the IMCL-to-OX-Enz ratio.  相似文献   

13.
刘辰东  杨露  蒲红州  杨琼  黄文耀  赵雪  朱砺  张顺华 《遗传》2017,39(10):888-896
DNA甲基化、组蛋白修饰和miRNA表达调控是表观遗传调控的3种重要方式,其在基因表达调控中发挥着关键作用。适当运动有益于身心健康。骨骼肌作为运动的主体组织,运动可以提高其代谢能力,改善其线粒体生物学功能,调控肌纤维类型转化,增加骨骼肌力量。近年来越来越多的研究表明,表观遗传调控在机体适应运动过程中发挥着重要作用,DNA甲基化、组蛋白修饰和miRNA表达调控等表观遗传调控方式通过调控骨骼肌基因表达来改变骨骼肌代谢能力、线粒体生物学功能和肌纤维类型,从而适应运动变化。本文对近年来运动对骨骼肌基因DNA甲基化、组蛋白修饰和相应miRNA表达调控等3种表观遗传调控方式的研究现状进行了综述,以期为进一步研究运动改善机体机能和健康提供参考。  相似文献   

14.
15.
16.
Although striated muscles differ in mitochondrial content, the extent of fiber-type specific mitochondrial specializations is not well known. To address this issue, we compared mitochondrial structural and functional properties in red muscle (RM), white muscle (WM), and cardiac muscle of rainbow trout. Overall preservation of the basic relationships between oxidative phosphorylation complexes among fiber types was confirmed by kinetic analyses, immunoblotting of native holoproteins, and spectroscopic measurements of cytochrome content. Fiber-type differences in mitochondrial properties were apparent when parameters were expressed per milligram mitochondrial protein. However, the differences diminished when expressed relative to cytochrome oxidase (COX), possibly a more meaningful denominator than mitochondrial protein. Expressed relative to COX, there were no differences in oxidative phosphorylation enzyme activities, pyruvate-based respiratory rates, H2O2 production, or state 4 proton leak respiration. These data suggest most mitochondrial qualitative properties are conserved across fiber types. However, there remained modest differences ( approximately 50%) in stoichiometries of selected enzymes of the Krebs cycle, beta-oxidation, and antioxidant enzymes. There were clear differences in membrane fluidity (RM > cardiac, WM) and proton conductance (H+/min/mV/U COX: WM > RM > cardiac). The pronounced differences in mitochondrial content between fiber types could be attributed to a combination of differences in myonuclear domain and modest effects on the expression of nuclear- and mitochondrially encoded respiratory genes. Collectively, these studies suggest constitutive pathways that transcend fiber types are primarily responsible for determining most quantitative and qualitative properties of mitochondria.  相似文献   

17.
The intent of this study was to determine whether aging affects signaling pathways involved in mitochondrial biogenesis in response to a single bout of contractile activity. Acute stimulation (1 Hz, 5 min) of the tibialis anterior (TA) resulted in a greater rate of fatigue in old (36 month), compared to young (6 month) F344XBN rats, which was associated with reduced ATP synthesis and a lower mitochondrial volume. To investigate fiber type-specific signaling, the TA was sectioned into red (RTA) and white (WTA) portions, possessing two- to 2.5-fold differences in mitochondrial content. The expression and contraction-mediated phosphorylation of p38, MKK3/6, CaMKII and AMPKα were assessed. Kinase protein expression tended to be higher in fiber sections with lower mitochondrial content, such as the WTA, relative to the RTA muscle, and this was exaggerated in tissues from senescent, compared to young animals. At rest, kinase activation was generally similar between young and old animals, despite the age-related variations in mitochondrial volume. In response to contractile activity, age did not influence the signaling of these kinases in the high-oxidative RTA muscle. However, in the low-oxidative WTA muscle, contraction-induced kinase activation was attenuated in old animals, despite the greater metabolic stress imposed by contractile activity in this muscle. Thus, the reduction of contraction-evoked kinase phosphorylation in muscle from old animals is fiber type-specific, and depends on factors which are, in part, independent of the metabolic milieu within the contracting fibers. These findings imply that the downstream consequences of kinase signaling are reduced in aging muscle.  相似文献   

18.
Extravillous cytotrophoblasts isolated from first trimester placenta, and immortalised cell lines derived from them, have the intrinsic ability to form endothelial-like tubes when cultured on Matrigel™ extracellular matrix. This in vitro tube formation may model placental angiogenesis and/or endovascular differentiation by trophoblasts. To interpret the relevance of this phenomenon to placental development, we used a gene expression microarray approach to identify which genes and pathways are associated with the tube-forming phenotype of HTR8/SVneo first trimester trophoblasts (HTR8-M), compared with HTR8/SVneo not forming tubes on plastic culture surface (HTR8-P). Furthermore, we used weighted gene co-expression network analysis (WGCNA) of microarray data to identify modules of co-expressed genes underlying the biological processes. There were 481 genes differentially expressed between HTR8-M and HTR8-P and these were significantly enriched for blood vessel development and related gene ontologies. WGCNA clustered the genes into 9 co-expression modules. One module was significantly associated with HTR8-M (p = 1.15E-05) and contained genes involved in actin cytoskeleton organization, cell migration and blood vessel development, consistent with tube formation on Matrigel. Another module was significantly associated with HTR8-P (p = 1.94E-05) and was enriched for genes involved in mitosis, consistent with proliferation by cells on plastic which do not differentiate. Up-regulation of angiogenesis and vascular development pathways in endovascular trophoblasts in vivo could underpin spiral artery remodelling processes, which are defective in preeclamptic pregnancies.  相似文献   

19.
Cardiolipin (CL) is a mitochondrial phospholipid essential for electron transport chain (ETC) integrity. CL-deficiency in humans is caused by mutations in the tafazzin (Taz) gene and results in a multisystem pediatric disorder, Barth syndrome (BTHS). It has been reported that tafazzin deficiency destabilizes mitochondrial respiratory chain complexes and affects supercomplex assembly. The aim of this study was to investigate the impact of Taz-knockdown on the mitochondrial proteomic landscape and metabolic processes, such as stability of respiratory chain supercomplexes and their interactions with fatty acid oxidation enzymes in cardiac muscle. Proteomic analysis demonstrated reduction of several polypeptides of the mitochondrial respiratory chain, including Rieske and cytochrome c1 subunits of complex III, NADH dehydrogenase alpha subunit 5 of complex I and the catalytic core-forming subunit of F0F1-ATP synthase. Taz gene knockdown resulted in upregulation of enzymes of folate and amino acid metabolic pathways in heart mitochondria, demonstrating that Taz-deficiency causes substantive metabolic remodeling in cardiac muscle. Mitochondrial respiratory chain supercomplexes are destabilized in CL-depleted mitochondria from Taz knockdown hearts resulting in disruption of the interactions between ETC and the fatty acid oxidation enzymes, very long-chain acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase, potentially affecting the metabolic channeling of reducing equivalents between these two metabolic pathways. Mitochondria-bound myoglobin was significantly reduced in Taz-knockdown hearts, potentially disrupting intracellular oxygen delivery to the oxidative phosphorylation system. Our results identify the critical pathways affected by the Taz-deficiency in mitochondria and establish a future framework for development of therapeutic options for BTHS.  相似文献   

20.
To determine whether mitochondrial dysfunction is causally related to muscle atrophy with aging, we examined respiratory capacity, H(2) O(2) emission, and function of the mitochondrial permeability transition pore (mPTP) in permeabilized myofibers prepared from four rat muscles that span a range of fiber type and degree of age-related atrophy. Muscle atrophy with aging was greatest in fast-twitch gastrocnemius (Gas) muscle (-38%), intermediate in both the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (Sol) muscles (-21%), and non-existent in adductor longus (AL) muscle (+47%). In contrast, indices of mitochondrial dysfunction did not correspond to this differential degree of atrophy. Specifically, despite higher protein expression for oxidative phosphorylation (oxphos) system in fast Gas and EDL, state III respiratory capacity per myofiber wet weight was unchanged with aging, whereas the slow Sol showed proportional decreases in oxphos protein, citrate synthase activity, and state III respiration. Free radical leak (H(2) O(2) emission per O(2) flux) under state III respiration was higher with aging in the fast Gas, whereas state II free radical leak was higher in the slow AL. Only the fast muscles had impaired mPTP function with aging, with lower mitochondrial calcium retention capacity in EDL and shorter time to mPTP opening in Gas and EDL. Collectively, our results underscore that the age-related changes in muscle mitochondrial function depend largely upon fiber type and are unrelated to the severity of muscle atrophy, suggesting that intrinsic changes in mitochondrial function are unlikely to be causally involved in aging muscle atrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号