首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Caspases and the cytotoxic lymphocyte protease granzyme B (GB) induce reactive oxygen species (ROS) formation, loss of transmembrane potential and mitochondrial outer membrane permeabilization (MOMP). Whether ROS are required for GB-mediated apoptosis and how GB induces ROS is unclear. Here, we found that GB induces cell death in an ROS-dependent manner, independently of caspases and MOMP. GB triggers ROS increase in target cell by directly attacking the mitochondria to cleave NDUFV1, NDUFS1 and NDUFS2 subunits of the NADH: ubiquinone oxidoreductase complex I inside mitochondria. This leads to mitocentric ROS production, loss of complex I and III activity, disorganization of the respiratory chain, impaired mitochondrial respiration and loss of the mitochondrial cristae junctions. Furthermore, we have also found that GB-induced mitocentric ROS are necessary for optimal apoptogenic factor release, rapid DNA fragmentation and lysosomal rupture. Interestingly, scavenging the ROS delays and reduces many of the features of GB-induced death. Consequently, GB-induced ROS significantly promote apoptosis.To induce cell death, human granzyme B (GB) activates effector caspase-3 or acts directly on key caspase substrates, such as the proapoptotic BH3 only Bcl-2 family member Bid, inhibitor of caspase-activated DNase (ICAD), poly-(ADP-ribose) polymerase-1 (PARP-1), lamin B, nuclear mitotic apparatus protein 1 (NUMA1), catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) and tubulin.1, 2, 3 Consequently, caspase inhibitors have little effect on human GB-mediated cell death and DNA fragmentation.2 GB causes reactive oxygen species (ROS) production, dissipation of the mitochondrial transmembrane potential (ΔΨm) and MOMP, which leads to the release of apoptogenic factors such as cytochrome c (Cyt c), HtrA2/Omi, endonuclease G (Endo G), Smac/Diablo and apoptosis-inducing factor, from the mitochondrial intermembrane space to the cytosol.4, 5, 6, 7, 8, 9, 10, 11 Interestingly, cells deficient for Bid, Bax and Bak are still sensitive to human GB-induced cell death,5, 11, 12, 13 suggesting that human GB targets the mitochondria in another way that needs to be characterized. Altogether, much attention has been focused on the importance of MOMP in the execution of GB-mediated cell death, leaving unclear whether ROS production is a bystander effect or essential to the execution of GB-induced apoptosis. The mitochondrial NADH: ubiquinone oxidoreductase complex I is a key determinant in steady-state ROS production. This 1 MDa complex, composed of 44 subunits,14 couples the transfer of two electrons from NADH to ubiquinone with the translocation of four protons to generate the ΔΨm. The importance of ROS has been previously demonstrated for caspase-3 and granzyme A (GA) pathways through the cleavage of NDUFS1 and NDUFS3, respectively.15, 16, 17, 18 GA induces cell death in a Bcl-2-insensitive and caspase- and MOMP-independent manner that has all the morphological features of apoptosis.1, 16, 17, 18, 19, 20 As GA and GB cell death pathways are significantly different, whether ROS are also critical for GB still need to be tested. Here, we show that GB induces ROS-dependent apoptosis by directly attacking the mitochondria in a caspase-independent manner to cleave NDUFS1, NDUFS2 and NDUFV1 in complex I. Consequently, GB inhibits electron transport chain (ETC) complex I and III activities, mitochondrial ROS production is triggered and mitochondrial respiration is compromised. Interestingly, MOMP is not required for GB to cleave the mitochondrial complex I subunits and ROS production. Moreover, GB action on complex I disrupts the organization of the respiratory chain and triggers the loss of the mitochondrial cristae junctions. We also show that GB-mediated mitocentric ROS are necessary for proper apoptogenic factor release from the mitochondria to the cytosol and for the rapid DNA fragmentation, both hallmarks of apoptosis. Moreover, GB-induced ROS are necessary for lysosomal membrane rupture. Thus, our work brings a new light to the GB pathway, showing that GB-mediated mitochondrial ROS are not adventitious waste of cell death, but essential mediators of apoptosis.  相似文献   

3.
In the oxidative stress hypothesis of aging, the aging process is the result of cumulative damage by reactive oxygen species. Humans and chimpanzees are remarkably similar; but humans live twice as long as chimpanzees and therefore are believed to age at a slower rate. The purpose of this study was to compare biomarkers for cardiovascular disease, oxidative stress, and aging between male chimpanzees and humans. Compared with men, male chimpanzees were at increased risk for cardiovascular disease because of their significantly higher levels of fibrinogen, IGF1, insulin, lipoprotein a, and large high-density lipoproteins. Chimpanzees showed increased oxidative stress, measured as significantly higher levels of 5-hydroxymethyl-2-deoxyuridine and 8-iso-prostaglandin F, a higher peroxidizability index, and higher levels of the prooxidants ceruloplasmin and copper. In addition, chimpanzees had decreased levels of antioxidants, including α- and β-carotene, β-cryptoxanthin, lycopene, and tocopherols, as well as decreased levels of the cardiovascular protection factors albumin and bilirubin. As predicted by the oxidative stress hypothesis of aging, male chimpanzees exhibit higher levels of oxidative stress and a much higher risk for cardiovascular disease, particularly cardiomyopathy, compared with men of equivalent age. Given these results, we hypothesize that the longer lifespan of humans is at least in part the result of greater antioxidant capacity and lower risk of cardiovascular disease associated with lower oxidative stress.Abbreviations: 5OHmU, 5-hydroxymethyl-2-deoxyuridine; 8isoPGF, 8-iso-prostaglandin F; HDL, high-density lipoprotein; IGF1, insulin-like growth factor 1; LDL, low-density lipoprotein; ROS, reactive oxygen speciesAging is characterized as a progressive reduction in the capacity to withstand the stresses of everyday life and a corresponding increase in risk of mortality. According to the oxidative stress hypothesis of aging, much of the aging process can be accounted for as the result of cumulative damage produced by reactive oxygen species (ROS).6,21,28,41,97 Endogenous oxygen radicals (that is, ROS) are generated as a byproduct of normal metabolic reactions in the body and subsequently can cause extensive damage to proteins, lipids, and DNA.6,41 Various prooxidant elements, in particular free transition metals, can catalyze these destructive reactions.6 The damage caused by ROS can be counteracted by antioxidant defense systems, but the imbalance between production of ROS and antioxidant defenses, over time, leads to oxidative stress and may contribute to the rate of aging.28,97Oxidative stress has been linked to several age-related diseases including neurodegenerative diseases, ophthalmologic diseases, cancer, and cardiovascular disease.21,28,97 Of these, cardiovascular disease remains the leading cause of adult death in the United States and Europe.71 In terms of cardiovascular disease, oxidative stress has been linked to atherosclerosis, hypertension, cardiomyopathy, and chronic heart failure in humans.55,78,84 Increases in oxidant catalysts (prooxidants)—such as copper, iron, and cadmium—have been associated with hypertension, coronary artery disease, atherosclerosis, and sudden cardiac death.98,102,106 Finally, both endogenous and exogenous antioxidants have been linked to decreased risk of cardiovascular disease, although the mechanisms behind this relationship are unclear.11,52,53 However, the oxidative stress hypothesis of aging aims to explain not only the mechanism of aging and age-related diseases (such as cardiovascular disease) in humans but also the differences between aging rates and the manifestations of age-related diseases across species.The differences in antioxidant and ROS levels between animals and humans offer promise for increasing our understanding of human aging. Additional evidence supporting the oxidative stress hypothesis of aging has come from comparative studies linking differences in aging rates across taxa with both antioxidant and ROS levels.4,17-21,58,71,86,105 In mammals, maximum lifespan potential is positively correlated with both serum and tissue antioxidant levels.17,18,21,71,105 Research has consistently demonstrated that the rate of oxidative damage varies across species and is negatively correlated with maximum lifespan potential.4,19,20,58,71,86 However, few studies involved detailed comparisons of hypothesized biochemical indicators of aging and oxidative stress between humans and animals.6 This type of interspecies comparison has great potential for directly testing the oxidative stress hypothesis of aging.Much evolutionary and genetic evidence supports remarkable similarity between humans and chimpanzees.95,100 Despite this similarity, humans have a lifespan of almost twice that of chimpanzees.3,16,47 Most comparative primate aging research has focused on the use of a macaque model,62,81,88 and several biochemical markers of age-related diseases have been identified in both humans and macaque monkeys.9,22,28,81,93,97 Several other species of monkeys have also been used in research addressing oxidative stress, antioxidant defenses, and maximum lifespan potential.18,21,58,105 However, no study to date has examined biochemical indicators of oxidative stress and aging in chimpanzees and humans as a test of the oxidative stress hypothesis for aging. The purpose of this study is to compare biochemical markers for cardiovascular disease, oxidative stress, and aging directly between male chimpanzees and humans. Given the oxidative stress hypothesis for aging and the known role of oxidative stress in cardiovascular disease, we predict that chimpanzees will show higher levels of cardiovascular risk and oxidative stress than humans.  相似文献   

4.
Reactive oxygen species (ROS) may cause cellular damage and oxidative stress-induced cell death. Autophagy, an evolutionarily conserved intracellular catabolic process, is executed by autophagy (ATG) proteins, including the autophagy initiation kinase Unc-51-like kinase (ULK1)/ATG1. Although autophagy has been implicated to have both cytoprotective and cytotoxic roles in the response to ROS, the role of individual ATG proteins, including ULK1, remains poorly characterized. In this study, we demonstrate that ULK1 sensitizes cells to necrotic cell death induced by hydrogen peroxide (H2O2). Moreover, we demonstrate that ULK1 localizes to the nucleus and regulates the activity of the DNA damage repair protein poly (ADP-ribose) polymerase 1 (PARP1) in a kinase-dependent manner. By enhancing PARP1 activity, ULK1 contributes to ATP depletion and death of H2O2-treated cells. Our study provides the first evidence of an autophagy-independent prodeath role for nuclear ULK1 in response to ROS-induced damage. On the basis of our data, we propose that the subcellular distribution of ULK1 has an important role in deciding whether a cell lives or dies on exposure to adverse environmental or intracellular conditions.Reactive oxygen species (ROS), such as superoxide and hydrogen peroxide (H2O2), are formed by the incomplete reduction of oxygen during oxidative phosphorylation and other enzymatic processes. ROS are signaling molecules that regulate cell proliferation, differentiation, and survival.1, 2, 3 Accumulation of ROS (i.e., oxidative stress) on exposure to xenobiotic agents or environmental toxins can cause cellular damage and death via apoptotic or nonapoptotic pathways.4, 5, 6 Oxidative stress-induced cellular damage and death have been implicated in aging, ischemia-reperfusion injury, inflammation, and the pathogenesis of diseases (e.g., neurodegeneration and cancer).7 Oxidative stress also contributes to the antitumor effects of many chemotherapeutic drugs, including camptothecin8, 9 and selenite.10, 11Autophagy, an evolutionarily conserved intracellular catabolic process, involves lysosome-dependent degradation of superfluous and damaged cytosolic organelles and proteins.12 It is typically upregulated under conditions of perceived stress and in response to cellular damage. The consequence of autophagy activation – whether cytoprotective or cytotoxic – appears to depend on the cell type and the nature and extent of stress. Although most studies indicate a cytoprotective role for autophagy, some evidence suggests that it contributes to cell death in response to oxidative stress.13, 14, 15, 16, 17 Studies have also indicated that autophagy may be suppressed in response to oxidative stress, thereby sensitizing certain cells to apoptosis.18, 19 Unc-51-like kinase/autophagy 1 (ULK1/ATG1) is a mammalian serine–threonine kinase that regulates flux through the autophagy pathway by activating the VPS34 PI(3) kinase complex and facilitating ATG9-dependent membrane recycling.20 Results from two studies suggest that ULK1 expression is altered in response to oxidative stress, and that the corresponding effects on autophagy contribute to cell death.18, 21For example, p53-mediated upregulation of ULK1 and increase in autophagy promote cell death in osteosarcoma cells exposed to sublethal doses of camptothecin,21 yet mutant p53-mediated suppression of ULK1 impairs autophagic flux and promotes apoptosis in selenite-treated NB4 cells.18 Here we investigated the role of ULK1 in cells exposed to H2O2.  相似文献   

5.
Transient ischemia is a leading cause of cognitive dysfunction. Postischemic ROS generation and an increase in the cytosolic Zn2+ level ([Zn2+]c) are critical in delayed CA1 pyramidal neuronal death, but the underlying mechanisms are not fully understood. Here we investigated the role of ROS-sensitive TRPM2 (transient receptor potential melastatin-related 2) channel. Using in vivo and in vitro models of ischemia–reperfusion, we showed that genetic knockout of TRPM2 strongly prohibited the delayed increase in the [Zn2+]c, ROS generation, CA1 pyramidal neuronal death and postischemic memory impairment. Time-lapse imaging revealed that TRPM2 deficiency had no effect on the ischemia-induced increase in the [Zn2+]c but abolished the cytosolic Zn2+ accumulation during reperfusion as well as ROS-elicited increases in the [Zn2+]c. These results provide the first evidence to show a critical role for TRPM2 channel activation during reperfusion in the delayed increase in the [Zn2+]c and CA1 pyramidal neuronal death and identify TRPM2 as a key molecule signaling ROS generation to postischemic brain injury.Transient ischemia is a major cause of chronic neurological disabilities including memory impairment and cognitive dysfunctions in stroke survivors.1, 2 The underlying mechanisms are complicated and multiple, and remain not fully understood.3 It is well documented in rodents, non-human primates and humans that pyramidal neurons in the CA1 region of the hippocampus are particularly vulnerable and these neurons are demised after transient ischemia, commonly referred to as the delayed neuronal death.4 Studies using in vitro and in vivo models of transient ischemia have demonstrated that an increase in the [Zn2+]c or cytosolic Zn2+ accumulation is a critical factor.5, 6, 7, 8, 9, 10, 11 There is evidence supporting a role for ischemia-evoked release of vesicular Zn2+ at glutamatergic presynaptic terminals and subsequent entry into postsynaptic neurons via GluA2-lacking AMPA subtype glutamate receptors (AMPARs) to raise the [Zn2+]c.12, 13, 14, 15, 16 Upon reperfusion, while glutamate release returns to the preischemia level,17 Zn2+ can activate diverse ROS-generating machineries to generate excessive ROS as oxygen becomes available, which in turn elicits further Zn2+ accumulation during reperfusion.18, 19 ROS generation and cytosolic Zn2+ accumulation have a critical role in driving delayed CA1 pyramidal neuronal death,7, 12, 20, 21, 22 but the molecular mechanisms underlying such a vicious positive feedback during reperfusion remain poorly understood.Transient receptor potential melastatin-related 2 (TRPM2) forms non-selective cationic channels; their sensitivity to activation by ROS via a mechanism generating the channel activator ADP-ribose (ADPR) confers diverse cell types including hippocampal neurons with susceptibility to ROS-induced cell death, and thus TRPM2 acts as an important signaling molecule mediating ROS-induced adversities such as neurodegeneration.23, 24, 25, 26 Emergent evidence indeed supports the involvement of TRPM2 in transient ischemia-induced CA1 pyramidal neuronal death.27, 28, 29, 30 This has been attributed to the modulation of NMDA receptor-mediated signaling; despite that ROS-induced activation of the TRPM2 channels results in no change in the excitability of neurons from the wild-type (WT) mice, TRPM2 deficiency appeared to favor prosurvival synaptic Glu2A expression and inhibit prodeath extrasynaptic GluN2B expression.30 A recent study suggests that TRPM2 activation results in extracellular Zn2+ influx to elevate the [Zn2+]c.31 The present study, using TRPM2-deficient mice in conjunction with in vivo and in vitro models of transient global ischemia, provides compelling evidence to show ROS-induced TRPM2 activation during reperfusion as a crucial mechanism determining the delayed cytosolic Zn2+ accumulation, CA1 neuronal death and postischemic memory impairment.  相似文献   

6.
Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and their contribution to seizure-induced cell death. Using live cell imaging techniques in glioneuronal cultures, we show that prolonged seizure-like activity increases ROS production in an NMDA receptor-dependent manner. Unexpectedly, however, mitochondria did not contribute to ROS production during seizure-like activity. ROS were generated primarily by NADPH oxidase and later by xanthine oxidase (XO) activity in a calcium-independent manner. This calcium-independent neuronal ROS production was accompanied by an increase in intracellular [Na+] through NMDA receptor activation. Inhibition of NADPH or XO markedly reduced seizure-like activity-induced neuronal apoptosis. These findings demonstrate a critical role for ROS in seizure-induced neuronal cell death and identify novel therapeutic targets.Reactive oxygen species (ROS) contribute to neuronal damage and have been linked to excitotoxicity.1, 2, 3, 4 An increase in ROS generation has also been identified in acute neurologic disease such as stroke,5,6 and recent evidence indicates that this may contribute to neuronal damage in seizures and epilepsy.7, 8, 9, 10 However, ROS measurements during seizure-like activity were predominantly performed in homogenates, extracellular fluids or brain regions with no clear demonstration of whether the ROS were of neuronal origin.9,11,12 Moreover, these studies lacked the necessary temporal resolution to determine accurately the evolution of ROS generation during and after prolonged seizure activity. Such obstacles can be overcome by live cell imaging of ROS, which has emerged as a powerful tool to study disease mechanisms.13If seizure activity induces ROS production in neurons, then a critical question is which sources of ROS production are triggered by such activity. Previous studies have suggested that mitochondria are the primary source of ROS generation in seizure models.8,14 However, there are alternative sources of ROS, in particular the enzymes NADPH oxidase and xanthine oxidase (XO). How these contribute to excitotoxicity during seizure activity is uncertain. That these enzymes may have an important role in seizure-induced ROS generation is suggested by two observations: (1) NMDA receptors have a pivotal role in seizure-induced neuronal damage15 and (2) direct pharmacologic activation of NMDA receptors can activate NADPH oxidase, increasing free radical production and consequently neuronal death.5,16,17 There is also burgeoning evidence of a role for NADPH oxidase activation in chronic brain pathology secondary to psychosocial stress, which leads to the development of neuropathologic alterations, and also in neurodegenerative disease.18,19Acute activation of NADPH oxidase in neurons has mainly been shown after direct pharmacologic activation of NMDA receptors via exposure to high levels of NMDA and this activation is calcium-dependent.16,17 More recently, activation of NADPH oxidase has been shown during seizure activity.9,20 These pathways also involved NMDA receptor activation and upregulation of NMDA receptor subunits NR1 and NR2B. Nonetheless, these studies used chemoconvulsant epilepsy models, which, in themselves, may have an impact on ROS generation. The mechanisms and relevance of activation of NADPH oxidase during seizure activity independent of chemoconvulsants is unclear, especially given the presence of alternative sources of ROS production. Moreover, XO may also represent a major potential source of ROS during periods of increased metabolism, such as that occuring during seizures. We have therefore asked whether NMDA receptor activation has a role in seizure-induced ROS production and which sources and mechanisms of ROS production are involved in its time course during seizure-like activity.Here, we demonstrate increased ROS generation during seizure-like activity. This is activity-dependent, but it is maintained by a Ca2+-independent pathway involving the activation of NMDA receptors, NADPH oxidase and XO at a later phase. Blocking NADPH oxidase and XO prevented seizure-induced neuronal cell death in vitro. We thus provide compelling evidence that these ROS-generating pathways are appropriate targets for preventing neuronal death in seizures.  相似文献   

7.
8.
9.
10.
11.
12.
Necroptosis is a form of regulated necrotic cell death mediated by receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3. Necroptotic cell death contributes to the pathophysiology of several disorders involving tissue damage, including myocardial infarction, stroke and ischemia-reperfusion injury. However, no inhibitors of necroptosis are currently in clinical use. Here we performed a phenotypic screen for small-molecule inhibitors of tumor necrosis factor-alpha (TNF)-induced necroptosis in Fas-associated protein with death domain (FADD)-deficient Jurkat cells using a representative panel of Food and Drug Administration (FDA)-approved drugs. We identified two anti-cancer agents, ponatinib and pazopanib, as submicromolar inhibitors of necroptosis. Both compounds inhibited necroptotic cell death induced by various cell death receptor ligands in human cells, while not protecting from apoptosis. Ponatinib and pazopanib abrogated phosphorylation of mixed lineage kinase domain-like protein (MLKL) upon TNF-α-induced necroptosis, indicating that both agents target a component upstream of MLKL. An unbiased chemical proteomic approach determined the cellular target spectrum of ponatinib, revealing key members of the necroptosis signaling pathway. We validated RIPK1, RIPK3 and transforming growth factor-β-activated kinase 1 (TAK1) as novel, direct targets of ponatinib by using competitive binding, cellular thermal shift and recombinant kinase assays. Ponatinib inhibited both RIPK1 and RIPK3, while pazopanib preferentially targeted RIPK1. The identification of the FDA-approved drugs ponatinib and pazopanib as cellular inhibitors of necroptosis highlights them as potentially interesting for the treatment of pathologies caused or aggravated by necroptotic cell death.Programmed cell death has a crucial role in a variety of biological processes ranging from normal tissue development to diverse pathological conditions.1, 2 Necroptosis is a form of regulated cell death that has been shown to occur during pathogen infection or sterile injury-induced inflammation in conditions where apoptosis signaling is compromised.3, 4, 5, 6 Given that many viruses have developed strategies to circumvent apoptotic cell death, necroptosis constitutes an important, pro-inflammatory back-up mechanism that limits viral spread in vivo.7, 8, 9 In contrast, in the context of sterile inflammation, necroptotic cell death contributes to disease pathology, outlining potential benefits of therapeutic intervention.10 Necroptosis can be initiated by death receptors of the tumor necrosis factor (TNF) superfamily,11 Toll-like receptor 3 (TLR3),12 TLR4,13 DNA-dependent activator of IFN-regulatory factors14 or interferon receptors.15 Downstream signaling is subsequently conveyed via RIPK116 or TIR-domain-containing adapter-inducing interferon-β,8, 17 and converges on RIPK3-mediated13, 18, 19, 20 activation of MLKL.21 Phosphorylated MLKL triggers membrane rupture,22, 23, 24, 25, 26 releasing pro-inflammatory cellular contents to the extracellular space.27 Studies using the RIPK1 inhibitor necrostatin-1 (Nec-1) 28 or RIPK3-deficient mice have established a role for necroptosis in the pathophysiology of pancreatitis,19 artherosclerosis,29 retinal cell death,30 ischemic organ damage and ischemia-reperfusion injury in both the kidney31 and the heart.32 Moreover, allografts from RIPK3-deficient mice are better protected from rejection, suggesting necroptosis inhibition as a therapeutic option to improve transplant outcome.33 Besides Nec-1, several tool compounds inhibiting different pathway members have been described,12, 16, 21, 34, 35 however, no inhibitors of necroptosis are available for clinical use so far.2, 10 In this study we screened a library of FDA approved drugs for the precise purpose of identifying already existing and generally safe chemical agents that could be used as necroptosis inhibitors. We identified the two structurally distinct kinase inhibitors pazopanib and ponatinib as potent blockers of necroptosis targeting the key enzymes RIPK1/3.  相似文献   

13.
A 5.5-y-old intact male cynomolgus macaque (Macaca fasicularis) presented with inappetence and weight loss 57 d after heterotopic heart and thymus transplantation while receiving an immunosuppressant regimen consisting of tacrolimus, mycophenolate mofetil, and methylprednisolone to prevent graft rejection. A serum chemistry panel, a glycated hemoglobin test, and urinalysis performed at presentation revealed elevated blood glucose and glycated hemoglobin (HbA1c) levels (727 mg/dL and 10.1%, respectively), glucosuria, and ketonuria. Diabetes mellitus was diagnosed, and insulin therapy was initiated immediately. The macaque was weaned off the immunosuppressive therapy as his clinical condition improved and stabilized. Approximately 74 d after discontinuation of the immunosuppressants, the blood glucose normalized, and the insulin therapy was stopped. The animal''s blood glucose and HbA1c values have remained within normal limits since this time. We suspect that our macaque experienced new-onset diabetes mellitus after transplantation, a condition that is commonly observed in human transplant patients but not well described in NHP. To our knowledge, this report represents the first documented case of new-onset diabetes mellitus after transplantation in a cynomolgus macaque.Abbreviations: NODAT, new-onset diabetes mellitus after transplantationNew-onset diabetes mellitus after transplantation (NODAT, formerly known as posttransplantation diabetes mellitus) is an important consequence of solid-organ transplantation in humans.7-10,15,17,19,21,25-28,31,33,34,37,38,42 A variety of risk factors have been identified including increased age, sex (male prevalence), elevated pretransplant fasting plasma glucose levels, and immunosuppressive therapy.7-10,15,17,19,21,25-28,31,33,34,37,38,42 The relationship between calcineurin inhibitors, such as tacrolimus and cyclosporin, and the development of NODAT is widely recognized in human medicine.7-10,15,17,19,21,25-28,31,33,34,37,38,42 Cynomolgus macaques (Macaca fasicularis) are a commonly used NHP model in organ transplantation research. Cases of natural and induced diabetes of cynomolgus monkeys have been described in the literature;14,43,45 however, NODAT in a macaque model of solid-organ transplantation has not been reported previously to our knowledge.  相似文献   

14.
15.
Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death.Neuropeptides are the largest and most diverse family of neurotransmitters. They are released from axon terminals and dendrites, diffuse to pre- or postsynaptic neuronal structures and activate membrane G-protein-coupled receptors. Prodynorphin (PDYN)-derived opioid peptides including dynorphin A (Dyn A), dynorphin B (Dyn B) and big dynorphin (Big Dyn) consisting of Dyn A and Dyn B are endogenous ligands for the κ-opioid receptor. Acting through this receptor, dynorphins regulate processing of pain and emotions, memory acquisition and modulate reward induced by addictive substances.1, 2, 3, 4 Furthermore, dynorphins may produce robust cellular and behavioral effects that are not mediated through opioid receptors.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 As evident from pharmacological, morphological, genetic and human neuropathological studies, these effects are generally pathological, including cell death, neurodegeneration, neurological dysfunctions and chronic pain. Big Dyn is the most active pathogenic peptide, which is about 10- to 100-fold more potent than Dyn A, whereas Dyn B does not produce non-opioid effects.16, 17, 22, 25 Big Dyn enhances activity of acid-sensing ion channel-1a (ASIC1a) and potentiates ASIC1a-mediated cell death in nanomolar concentrations30, 31 and, when administered intrathecally, induces characteristic nociceptive behavior at femtomolar doses.17, 22 Inhibition of endogenous Big Dyn degradation results in pathological pain, whereas prodynorphin (Pdyn) knockout mice do not maintain neuropathic pain.22, 32 Big Dyn differs from its constituents Dyn A and Dyn B in its unique pattern of non-opioid memory-enhancing, locomotor- and anxiolytic-like effects.25Pathological role of dynorphins is emphasized by the identification of PDYN missense mutations that cause profound neurodegeneration in the human brain underlying the SCA23 (spinocerebellar ataxia type 23), a very rare dominantly inherited neurodegenerative disorder.27, 33 Most PDYN mutations are located in the Big Dyn domain, demonstrating its critical role in neurodegeneration. PDYN mutations result in marked elevation in dynorphin levels and increase in its pathogenic non-opioid activity.27, 34 Dominant-negative pathogenic effects of dynorphins are not produced through opioid receptors.ASIC1a, glutamate NMDA (N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate ion channels, and melanocortin and bradykinin B2 receptors have all been implicated as non-opioid dynorphin targets.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 30, 31, 35, 36 Multiplicity of these targets and their association with the cellular membrane suggest that their activation is a secondary event triggered by a primary interaction of dynorphins with the membrane. Dynorphins are among the most basic neuropeptides.37, 38 The basic nature is also a general property of anti-microbial peptides (AMPs) and amyloid peptides that act by inducing membrane perturbations, altering membrane curvature and causing pore formation that disrupts membrane-associated processes including ion fluxes across the membrane.39 The similarity between dynorphins and these two peptide groups in overall charge and size suggests a similar mode of their interactions with membranes.In this study, we dissect the interactions of dynorphins with the cell membrane, the primary event in their non-receptor actions. Using fluorescence imaging, correlation spectroscopy and patch-clamp techniques, we demonstrate that dynorphin peptides accumulate in the plasma membrane in live cells and cause a profound transient increase in cell membrane conductance. Membrane poration by endogenous neuropeptides may represent a novel mechanism of signal transduction in the brain. This mechanism may underlie effects of dynorphins under pathological conditions including chronic pain and tissue injury.  相似文献   

16.
Metacaspases (MCAs) are cysteine peptidases expressed in plants, fungi and protozoa, with a caspase-like histidine–cysteine catalytic dyad, but differing from caspases, for example, in their substrate specificity. The role of MCAs is subject to debate: roles in cell cycle control, in cell death or even in cell survival have been suggested. In this study, using a Leishmania major MCA-deficient strain, we showed that L. major MCA (LmjMCA) not only had a role similar to caspases in cell death but also in autophagy and this through different domains. Upon cell death induction by miltefosine or H2O2, LmjMCA is processed, releasing the catalytic domain, which activated substrates via its catalytic dyad His/Cys and a proline-rich C-terminal domain. The C-terminal domain interacted with proteins, notably proteins involved in stress regulation, such as the MAP kinase LmaMPK7 or programmed cell death like the calpain-like cysteine peptidase. We also showed a new role of LmjMCA in autophagy, acting on or upstream of ATG8, involving Lmjmca gene overexpression and interaction of the C-terminal domain of LmjMCA with itself and other proteins. These results allowed us to propose two models, showing the role of LmjMCA in the cell death and also in the autophagy pathway, implicating different protein domains.Apoptosis is, in most cases, associated with and depends on the activation of cys-dependent peptidases, named caspases.1, 2 Once activated, initiator caspases induce a proteolytic cascade via the activation of effector caspases that ultimately cleave numerous substrates, thereby causing the typical morphological features of apoptosis.3, 4 Despite their essential role in apoptosis, caspases are also involved in non-apoptotic events, including inflammation, cell proliferation, cell differentiation5 and the cell survival process autophagy, a major catabolic process in eukaryotic cells that allows cells to survive nutrient starvation due to engulfment of a portion of the cytoplasm by a specific membrane, delivery to lysosomes or vacuoles and digestion by hydrolytic enzymes.6, 7, 8, 9, 10 Plants, fungi and protozoa are devoid of caspases but express metacaspases (MCAs).11MCAs are cysteine peptidases of the clan CD, family 14, with a caspase-like histidine–cysteine catalytic dyad.12, 13 However, besides their distant similarity to caspases,14 MCAs prefer arginine/lysine in the P1 position, whereas caspases prefer aspartic residues.15, 16 The role of MCAs in cell death is still enigmatic. For example, in the yeast Saccharomyces cerevisiae, YCA1 has a role in cell death,17, 18 whereas, although only partly dependent on its conserved catalytic cysteine, it also facilitates the removal of unfolded proteins, prolonging cellular life span.19 Similarly, some metacaspases have roles, outside of death, in stress acclimation pathways, as in Aspergillus fumigatus20 or in the unicellular planctonic organisms diatoms.21, 22 In Arabidopsis thaliana, AtMC1 is a positive regulator of cell death and a survival factor for aging plants,23 whereas AtMC2 negatively regulates cell death.24 Trypanosoma brucei TbMCA2, TbMCA3 and TbMCA5 and Leishmania major MCA are involved in cell cycle regulation.25, 26Leishmania are parasitic protozoa responsible for the neglected tropical disease leishmaniasis, transmitted to humans by the bite of the sand fly. In the insect, parasites proliferate as free-living flagellated forms called procyclic promastigotes within the midgut before differentiating into virulent metacyclic promastigotes and migrating to the proboscis.27, 28 In the mammalian host, promastigotes are taken up by macrophages and transform into amastigotes. Under a variety of stress stimuli, apoptosis-like morphological and biochemical features have been described in Leishmania, among which are cell shrinkage, chromatin condensation, DNA fragmentation or mitochondrial depolarization.29, 30, 31, 32, 33, 34, 35, 36, 37, 38 Despite the evidence of morphological and biochemical markers of cell death in dying Leishmania, very little is known about the cell death pathway and the implicated executioner proteins. Indeed, essential proteins involved in mammalian apoptosis, death receptors, small pro- and anti-apoptotic molecules and caspases, are apparently not encoded in the genome of Leishmania39 and the role of Leishmania MCA in cell death is still controversial, certain authors suggesting a role as a negative regulator of intracellular amastigote proliferation, instead of having a caspase-like role in the execution of cell death.40LmjMCA contains different domains: an N-terminal domain with a Mitochondrion Localization Signal (MLS),41 a caspase-like catalytic domain and a C-terminal proline-rich domain.41 On the basis of this domain structure, LmjMCA can be classified among the type I metacaspases,16 a subclass more generally defined in higher plants and characterized by the presence of an N-terminal prodomain and a short linker between the large and small subunits, as initiator caspases in metazoans.11 Upon induction of cell death by heat shock, H2O2 or drugs like miltefosine or curcumin, LmjMCA is processed and the catalytic domain is released,41 liberating the C-terminal domain. It was therefore interesting to investigate the functional roles of the different domains.In this report, we studied the role of L. major MCA (LmjMCA), using an MCA-deficient strain and overexpressing independently the catalytic and the C-terminal domains. The results confirmed that MCA was not essential to L. major survival. In contrast, LmjMCA processing, releasing its catalytic and C-terminal domains, induced cell death in L. major, whereas the overexpression of Lmjmca gene triggered autophagy after interaction of the C-terminal domain with itself and with other proteins, acting on or upstream of the autophagic protein ATG8.  相似文献   

17.
18.
To grant faithful chromosome segregation, the spindle assembly checkpoint (SAC) delays mitosis exit until mitotic spindle assembly. An exceedingly prolonged mitosis, however, promotes cell death and by this means antimicrotubule cancer drugs (AMCDs), that impair spindle assembly, are believed to kill cancer cells. Despite malformed spindles, cancer cells can, however, slip through SAC, exit mitosis prematurely and resist killing. We show here that the Fcp1 phosphatase and Wee1, the cyclin B-dependent kinase (cdk) 1 inhibitory kinase, play a role for this slippage/resistance mechanism. During AMCD-induced prolonged mitosis, Fcp1-dependent Wee1 reactivation lowered cdk1 activity, weakening SAC-dependent mitotic arrest and leading to mitosis exit and survival. Conversely, genetic or chemical Wee1 inhibition strengthened the SAC, further extended mitosis, reduced antiapoptotic protein Mcl-1 to a minimum and potentiated killing in several, AMCD-treated cancer cell lines and primary human adult lymphoblastic leukemia cells. Thus, the Fcp1-Wee1-Cdk1 (FWC) axis affects SAC robustness and AMCDs sensitivity.The spindle assembly checkpoint (SAC) delays mitosis exit to coordinate anaphase onset with spindle assembly. To this end, SAC inhibits the ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C) to prevent degradation of the anaphase inhibitor securin and cyclin B, the major mitotic cyclin B-dependent kinase 1 (cdk1) activator, until spindle assembly.1 However, by yet poorly understood mechanisms, exceedingly prolonging mitosis translates into cell death induction.2, 3, 4, 5, 6, 7 Although mechanistic details are still missing on how activation of cell death pathways is linked to mitosis duration, prolongation of mitosis appears crucial for the ability of antimicrotubule cancer drugs (AMCDs) to kill cancer cells.2, 3, 4, 5, 6, 7 These drugs, targeting microtubules, impede mitotic spindle assembly and delay mitosis exit by chronically activating the SAC. Use of these drugs is limited, however, by toxicity and resistance. A major mechanism for resistance is believed to reside in the ability of cancer cells to slip through the SAC and exit mitosis prematurely despite malformed spindles, thus resisting killing by limiting mitosis duration.2, 3, 4, 5, 6, 7 Under the AMCD treatment, cells either die in mitosis or exit mitosis, slipping through the SAC, without or abnormally dividing.2, 3, 4 Cells that exit mitosis either die at later stages or survive and stop dividing or proliferate, giving rise to resistance.2, 3, 4 Apart from a role for p53, what dictates cell fate is still unknown; however, it appears that the longer mitosis is protracted, the higher the chances for cell death pathway activation are.2, 3, 4, 5, 6, 7Although SAC is not required per se for killing,6 preventing SAC adaptation should improve the efficacy of AMCD by increasing mitosis duration.2, 3, 4, 5, 6, 7 Therefore, further understanding of the mechanisms by which cells override SAC may help to improve the current AMCD therapy. Several kinases are known to activate and sustain SAC, and cdk1 itself appears to be of primary relevance.1, 8, 9 By studying mitosis exit and SAC resolution, we recently reported a role for the Fcp1 phosphatase to bring about cdk1 inactivation.10, 11 Among Fcp1 targets, we identified cyclin degradation pathway components, such as Cdc20, an APC/C co-activator, USP44, a deubiquitinating enzyme, and Wee1.10, 11 Wee1 is a crucial kinase that controls the G2 phase by performing inhibitory phosphorylation of cdk1 at tyr-15 (Y15-cdk1). Wee1 is also in a feedback relationship with cdk1 itself that, in turn, can phosphorylate and inhibit Wee1 in an autoamplification loop to promote the G2-to-M phase transition.12 At mitosis exit, Fcp1 dephosphorylated Wee1 at threonine 239, a cdk1-dependent inhibitory phosphorylation, to dampen down the cdk1 autoamplification loop, and Cdc20 and USP44, to promote APC/C-dependent cyclin B degradation.10, 11, 12 In this study we analysed the Fcp1 relevance in SAC adaptation and AMCD sensitivity.  相似文献   

19.
Potato tuber (Solanum tuberosum) mitochondria (PTM) have a mitochondrially bound hexokinase (HK) activity that exhibits a pronounced sensitivity to ADP inhibition. Here we investigated the role of mitochondrial HK activity in PTM reactive oxygen species generation. Mitochondrial HK has a 10-fold higher affinity for glucose (Glc) than for fructose (KMGlc = 140 μm versus KMFrc = 1,375 μm). Activation of PTM respiration by succinate led to an increase in hydrogen peroxide (H2O2) release that was abrogated by mitochondrial HK activation. Mitochondrial HK activity caused a decrease in the mitochondrial membrane potential and an increase in oxygen consumption by PTM. Inhibition of Glc phosphorylation by mannoheptulose or GlcNAc induced a rapid increase in H2O2 release. The blockage of H2O2 release sustained by Glc was reverted by oligomycin and atractyloside, indicating that ADP recycles through the adenine nucleotide translocator and F0F1ATP synthase is operative during the mitochondrial HK reaction. Inhibition of mitochondrial HK activity by 60% to 70% caused an increase of 50% in the maximal rate of H2O2 release. Inhibition in H2O2 release by mitochondrial HK activity was comparable to, or even more potent, than that observed for StUCP (S. tuberosum uncoupling protein) activity. The inhibition of H2O2 release in PTM was two orders of magnitude more selective for the ADP produced from the mitochondrial HK reaction than for that derived from soluble yeast (Saccharomyces cerevisiae) HK. Modulation of H2O2 release and oxygen consumption by Glc and mitochondrial HK inhibitors in potato tuber slices shows that hexoses and mitochondrial HK may act as a potent preventive antioxidant mechanism in potato tubers.Production of reactive oxygen species (ROS) is an unavoidable consequence of aerobic respiration (Chance et al., 1979). The mitochondrial electron transport system (ETS) is the major site of ROS production in mammalian and nonphotosynthesizing plant cells (Puntarulo et al., 1991; Halliwell and Gutteridge, 2007). Depending on the mitochondrial respiratory states, a small portion of the consumable oxygen is partially reduced to generate ROS (Skulachev, 1996; Liu, 1997; Turrens, 1997; Møller, 2001; Considine et al., 2003; Smith et al., 2004). In plants, the monoelectronic reduction of oxygen by ETS leads to the production of superoxide radicals (O2·−) that can be dismutated by SOD, producing hydrogen peroxide (H2O2), and further decomposed by catalase and/or ascorbate-glutathione peroxidase cycles (Møller, 2001). An imbalance between the ROS production and antioxidant defenses can lead to an oxidative stress condition. Increased levels of ROS may be a consequence of the action of plant hormones, environmental stress, pathogens, or high levels of sugars and fatty acids (Bolwell et al., 2002; Couée et al., 2006; Gechev et al., 2006; Liu et al., 2007; Rhoads and Subbaiah, 2007). These conditions may lead to storage deterioration or impairment of seedling growth decreasing on crop yield. To avoid the harmful accumulation of ROS or to fine tune the steady-state levels of ROS, various enzymatic systems control the rate of ROS production in mitochondria (Schreck and Baeuerle, 1991; Møller, 2001).Mitochondrial ROS production is highly dependent on the membrane potential (ΔΨm) generated by the proton gradient formed across the inner mitochondrial membrane. High ΔΨm was shown to stimulate ROS production when the ETS is predominantly in a reduced state (i.e. when NADH, FADH2, and O2 are present in abundance but ADP or Pi levels are low). This condition is reached in resting metabolic states after a full oxidation of Glc or fatty acids. Stimulating electron flow by decreasing ΔΨm, either by the use of uncouplers or by coupling respiration to ATP synthesis, slows the ROS generation rate (Boveris and Chance, 1973; Korshunov et al., 1997). It has been observed that in isolated potato tuber (Solanum tuberosum) mitochondria (PTM) the uncoupling protein (referred to as PUMP in plants, or UCP in animals) causes a small decrease in ΔΨm when this proton carrier protein is activated by the presence of anionic fatty acids, a condition that blocks ROS generation (Vercesi et al., 1995, 2006). Nucleotides, such as ATP, antagonize this effect (Considine et al., 2003; Vercesi et al., 2006). On the other hand, fluctuations in free hexose levels due to environmental or developmental conditions (Morrell and ap Rees, 1986; Geigenberger and Stitt, 1993; Renz and Stitt, 1993) lead to variations in the oxygen consumption rate in heterotrophic tissues of plant (Brouquisse et al., 1991; Dieuaide et al., 1992). As a result, ROS-producing pathways may be either stimulated or repressed (Couée et al., 2006). Unlike PUMP activity, which is activated by an excess of free fatty acids, a specific mechanism for mitochondrial ROS production caused by an excess of hexose remains elusive.The metabolism of free hexoses begins by their phosphorylation in a reaction catalyzed by the hexokinase (HK):HK is a ubiquitous enzyme found in many organisms. In plants, the binding mechanism of HK to the outer mitochondrial membrane is not fully established, but some reports indicate that it may differ considerably from those properties described for mammal cells (Dry et al., 1983; Miernyk and Dennis, 1983; Rezende et al., 2006). It has been shown that in several mature and developing plant tissues, multiple HK isoforms are expressed with different kinetic properties and subcellular localizations. The HKs are found in cytosol, bound to the mitochondrial membrane, or in stroma of plastids in plant cells (Miernyk and Dennis, 1983; Galina et al., 1995; Damari-Weissler et al., 2007). Beyond its obvious role in glycolysis regulation, HK activity may also function as a sugar sensor, triggering a signal transduction pathway in plants (Rolland et al., 2006).In mammals, HK types I and II are associated with the mitochondrial outer membrane through the voltage-dependent anion channel (VDAC) and adenine nucleotide transporter (ANT). These associations were found in tissues with a high energy demand, such as heart, brain, and tumor cells (Arora and Pedersen, 1988; BeltrandelRio and Wilson, 1992; Wilson, 2003). In addition, recent evidence in mammalian cells has shown that binding of HK to VDAC located at the outer mitochondrial membrane is somehow involved in the protection against proapoptotic stimuli (Nakashima et al., 1986; Gottlob et al., 2001; Vander Heiden et al., 2001; Pastorino et al., 2002; Cesar and Wilson, 2004). Similar observations were reported for tobacco (Nicotiana tabacum) plant mitochondrial HK (mt-HK; Kim et al., 2006). However, it has been shown that drugs such as the fungicide clotrimazole and the anesthetic thiopental, which promptly disrupt the association between mt-HK and VDAC in mammalian mitochondria, are unable to promote this effect in maize (Zea mays) root mitochondria (Rezende et al., 2006). These observations suggest a different type of association of mt-HK with plant mitochondria. The binding of mt-HK with mitochondria in many plants involves a common N-terminal hydrophobic membrane anchor domain of about 24 amino acids that is related to the membrane targeting, but the exact mechanism of association is unknown (Damari-Weissler et al., 2007).Recently, our group demonstrated that mt-HK activity plays a key preventive antioxidant role by reducing mitochondrial ROS generation through a steady-state ADP recycling mechanism in rat brain neurons. The mitochondrial ADP recycling leads to a decrease in the ΔΨm coupled to the synthesis of ATP by oxidative phosphorylation (da-Silva et al., 2004; Meyer et al., 2006).Although plant HK is recognized to fulfill a catalytic function, the role of mt-HK activity in the regulation of both mitochondrial respiration and ROS production in plants is unknown. Recently, an authentic HK activity was detected in PTM (Graham et al., 2007) and its involvement in potato tuber glycolysis suggested, but its involvement in PTM ROS generation was not explored. We then raise the hypothesis that HK bound to PTM would contribute to produce a steady-state ADP recycling that regulates ROS formation. However, whether this association is capable of controlling the rate of ROS generation in plant mitochondria is unknown. Here, we aim to investigate the role of mt-HK activity in PTM physiology. The data indicate that mt-HK activity plays a key role as a regulator of ROS levels in respiring plant tissues exposed to high hexose levels.  相似文献   

20.
Hearing loss and balance disorders affect millions of people worldwide. Sensory transduction in the inner ear requires both mechanosensory hair cells (HCs) and surrounding glia-like supporting cells (SCs). HCs are susceptible to death from aging, noise overexposure, and treatment with therapeutic drugs that have ototoxic side effects; these ototoxic drugs include the aminoglycoside antibiotics and the antineoplastic drug cisplatin. Although both classes of drugs are known to kill HCs, their effects on SCs are less well understood. Recent data indicate that SCs sense and respond to HC stress, and that their responses can influence HC death, survival, and phagocytosis. These responses to HC stress and death are critical to the health of the inner ear. Here we have used live confocal imaging of the adult mouse utricle, to examine the SC responses to HC death caused by aminoglycosides or cisplatin. Our data indicate that when HCs are killed by aminoglycosides, SCs efficiently remove HC corpses from the sensory epithelium in a process that includes constricting the apical portion of the HC after loss of membrane integrity. SCs then form a phagosome, which can completely engulf the remaining HC body, a phenomenon not previously reported in mammals. In contrast, cisplatin treatment results in accumulation of dead HCs in the sensory epithelium, accompanied by an increase in SC death. The surviving SCs constrict fewer HCs and display impaired phagocytosis. These data are supported by in vivo experiments, in which cochlear SCs show reduced capacity for scar formation in cisplatin-treated mice compared with those treated with aminoglycosides. Together, these data point to a broader defect in the ability of the cisplatin-treated SCs, to preserve tissue health in the mature mammalian inner ear.Hearing loss affects more than 360 million people worldwide and is often irreversible.1 Mechanosensory hair cells (HCs), the receptor cells of hearing and balance, are not regenerated in the adult mammal and their death results in permanent hearing loss.2, 3 HCs are surrounded by glia-like supporting cells (SCs) that are necessary for HC survival and function (reviewed in Monzack et al.).4 SCs perform many functions, including providing critical trophic factors, preventing excitotoxicity, and mediating regeneration in those systems (non-mammalian vertebrates) capable of replacing lost HCs.5, 6, 7, 8, 9, 10, 11 When HCs die, SCs also preserve the integrity and function of the remaining tissue by forming scars and clearing dead HCs.2, 12, 13, 14, 15, 16, 17 Maintaining a fluid barrier at the surface of the sensory epithelium after damage is necessary to preserve the electro-chemical gradient that drives HC depolarization and therefore sensory transduction after the onset of hearing (reviewed in Wangemann).18Several major stressors cause HC death,19, 20, 21, 22 including aging, noise trauma, and exposure to therapeutic drugs with ototoxic side effects. When a HC is killed by noise or aminoglycoside antibiotics, surrounding SCs form a filamentous actin (F-actin) cable that constricts the HC at its apex.2, 12, 13, 14, 15, 16, 17 This process separates the apical portion of the cell, including the stereocilia bundle, from the HC body and preserves a sealed reticular lamina.23 In the chick utricle, following the apical constriction of dead HCs, the SCs engulf and phagocytose the remaining HC corpse.15 Additional data from the chick indicate that the ototoxic drug cisplatin impairs some SC functions, including regeneration of HCs or clearance of HC debris.24 We hypothesized that SCs would have significant phagocytic activity in the mature mammalian inner ear, and that cisplatin would impair this activity. To examine these dynamic processes, we live-imaged SC phagocytic activity in the adult mouse utricle and compared the SC responses with HC stress and death caused by aminoglycosides versus cisplatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号