首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Krebs RA  Thompson KA 《Genetica》2006,128(1-3):217-225
To demonstrate how insects may adapt to ecologically relevant levels of heat stress, we performed artificial selection on the ability of Drosophila melanogaster to fly after an exposure to a high but non-lethal thermal stress. Both tolerance and intolerance to heat stress arose very quickly, as only a few generations of selection were necessary to cause significant separation between high and low lines for heat tolerance. Estimates of heritability based on the lines artificially selected for increased flight ability ranged from 0.024 to 0.052, while estimates of heritability based on the lines selected for the inability to fly after heat stress varied between 0.035 and 0.091. Reciprocal F1 crosses among these lines revealed strong additive effects of one or more autosomes and a weaker X-chromosome effect. This variation apparently affected flight specifically; neither survival to a more extreme stress nor knockdown by high temperature changed between lines selected for high and low heat tolerance as measured by flight ability. As the well-studied heat-shock response is associated with heat tolerance as measured by survival and knockdown, the aspects of the stress physiology that actually affect flight ability remains unknown.  相似文献   

2.
In order to understand how adaptive tolerance to stress has evolved, we compared related species and populations of Drosophila for a variety of fitness relevant traits while flies directly experienced the stress. Two main questions were addressed. First, how much variation exists in the frequency of both courtship and mating among D. melanogaster, D. simulans, and D. mojavensis when each are exposed to a range of temperatures? Second, how does variation in these same behaviours compare among four geographically isolated populations of D. mojavensis, a desert species with a well defined ecology? Our hierarchical study demonstrated that mating success under stress can vary as much between related species, such as D. melanogaster and D. simulans, as between the ecologically disparate pair, D. melanogaster and D. mojavensis. Strains of this latter desert species likewise varied in tolerance, with differences approaching the levels observed among species. The consequences of stress on male courtship differed markedly from those on female receptivity to courtship, as mating behaviours among species and among strains of D. mojavensis varied in subtle but significant ways. Finally, a comparison of variation in thermotolerance of F1 hybrids between the two most extreme D. mojavensis populations confirmed that genetic variation underlying traits such as survival or the ability to fly after heat stress is completely different. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 83 , 197–205.  相似文献   

3.
A clonal strain of mammalian cells with increased resistance to acute heat shock at 46° was compared with the heat-sensitive parental line from which it was derived for possible differences that might account for this acquired resistance. Studies on synchronized populations of the two cell strains did not reveal any differential heat sensitivities in the various parts of the cell cycle (G1, S, G2) within either the sensitive or resistant populations. During thermal stress both cell types exhibited marked inhibition of ability to incorporate isotopically labeled precursors into macromolecular RNA, DNA, and protein. However, significant differences were observed between the sensitive and resistant cells in the amount of leakage of materials from the two cell types during heat stress and in their relative rates of recovery after stress. Sensitive cells pre-labeled with 3H-uridine released considerably more acid-soluble (cold, 5% TCA) label-containing materials during heat stress than did pre-labeled resistant cells. This differential release of uridine-containing materials was not paralleled by a generalized differential leakiness to other compounds. In addition, the resistant cells were found to regain the capacity to synthesize vital macromolecules sooner, and at initially faster rates, than the sensitive cells after stress. These results suggest that permeability changes causing decreased leakage of uridine-containing materials during heat stress combined with accelerated rates of recovery of synthesis of essential macromolecules after stress may be important cellular mechanisms in resistance to heat shock.  相似文献   

4.
Abstract. Body temperatures and kinematics are measured for male Centris pallida bees engaged in a variety of flight behaviours (hovering, patrolling, pursuit) at a nest aggregation site in the Sonoran Desert. The aim of the study is to test for evidence of thermoregulatory variation in convective heat loss and metabolic heat production and to assess the mechanisms of acceleration and forward flight in field conditions. Patrolling males have slightly (1–3 °C) cooler body temperatures than hoverers, despite similar wingbeat frequencies and larger body masses, suggesting that convective heat loss is likely to be greater during patrolling flight than during hovering. Comparisons of thorax and head temperature as a function of air temperature (Ta) indicate that C. pallida males are thermoregulating the head by increasing heat transfer from the thorax to the head at cool Ta. During patrolling flight and hovering, wingbeat frequency significantly decreases as Ta increases, indicating that variation in metabolic heat production contributes to thermal stability during these behaviours, as has been previously demonstrated for this species during flight in a metabolic chamber. However, wingbeat frequency during brief (1–2 s) pursuits is significantly higher than during other flight behaviours and independent of Ta. Unlike most other hovering insects, C. pallida males hover with extremely inclined stroke plane angles and nearly horizontal body angles, suggesting that its ability to vary flight speed depends on changes in wingbeat frequency and other kinematic mechanisms that are not yet described.  相似文献   

5.
Patterns of clinal genetic variation in Drosophila are often characterized after rearing at constant temperatures. However, clinal patterns might change after acclimation if populations differ in their plastic response to fluctuating environments. We studied longevity, starvation and heat knock‐down resistance after development at either constant or fluctuating temperatures in nine Drosophila buzzatii populations collected along an altitudinal gradient in Tenerife, Spain. Flies that developed at fluctuating temperatures had higher stress resistance despite experiencing a slightly lower average temperature than those at constant temperatures. Genetic variation along the gradient was found in both stress‐resistance traits. Because QST values greatly exceeded FST values, genetic drift could not explain this diversification. In general, differences among populations were larger after rearing at fluctuating temperatures, especially in heat knock‐down, for which clinal patterns disappeared when flies were reared at constant temperatures. This result emphasizes the importance of determining whether populations originating from different environments differ in their plastic responses to stress.  相似文献   

6.
Tuber borchii is an ectomycorrhizal ascomycete with a wide ecological range, which forms valuable fruit bodies (truffles). The effect of heat stress on the growth and morphology of ectomycorrhizas and mycelia of 11 T. borchii strains of different geographical and ecological provenance was evaluated. Mycelia and T. borchii-colonized plants were differentially grow at 22 °C, 28 °C and 34 °C. Further, the expression of two genes involved in stress response was also analysed in strains showing a different growth response to the high temperatures. Four out of 11 strains were classified as tolerant to heat stress based on their ability to grow and form mycorrhizas at 28 °C as at 22 °C. Only one strain seemed to show a high-temperature induced quiescence and survived after exposure at 34 °C. The expression of the genes considered in this work seems to be related to the level of heat stress tolerance in a strain.  相似文献   

7.
Our understanding of the effects of heat stress on plant photosynthesis has progressed rapidly in recent years through the use of chlorophyll a fluorescence techniques. These methods frequently involve the treatment of leaves for several hours in dark conditions to estimate declines in maximum quantum yield of photsystem II (F V/F M), rarely accounting for the recovery of effective quantum yield (ΔF/F M′) after thermally induced damage occurs. Exposure to high temperature extremes, however, can occur over minutes, rather than hours, and recent studies suggest that light influences damage recovery. Also, the current focus on agriculturally important crops may lead to assumptions about average stress responses and a poor understanding about the variation among species’ thermal tolerance. We present a chlorophyll a fluorescence protocol incorporating subsaturating light to address whether species’ thermal tolerance thresholds (T 50) are related to the ability to recover from short-term heat stress in 41 Australian desert species. We found that damage incurred by 15-min thermal stress events was most strongly negatively correlated with the capacity of species to recover after a stress event of 50 °C in summer. Phylogenetically independent contrast analyses revealed that basal divergences partially explain this relationship. Although T 50 and recovery capacity were positively correlated, the relationship was weaker for species with high T 50 values (>51 °C). Results highlight that, even within a single desert biome, species vary widely in their physiological response to high temperature stress and recovery metrics provide more comprehensive information than damage metrics alone.  相似文献   

8.
Mediterranean plants are usually exposed to a combination of stresses, which may occur simultaneously or at different times throughout their life. Here, the hormonal response to high temperatures was compared in plants of three Labiatae species, including rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.) and lemon balm (Melissa officinalis L.). Plants exposed to increasing temperatures for 5 days were subsequently exposed to heat stress and compared to plants experiencing heat stress for the first time (controls). Despite the three species showing a similar tolerance to a single heat stress event, stress recurrence had a different impact on each species. Lemon balm was the most sensitive species to stress reiteration, showing decreased relative water content upon heat stress repetition, together with enhanced levels of α-tocopherol and salicylic acid (SA). Some acclimation responses were observed in rosemary and sage, including improved water contents and reduced jasmonic acid levels in rosemary, and reduced abscisic acid (ABA) and malondialdehyde (MDA) levels in sage plants previously exposed to high temperatures. Furthermore, the response of plants to a combination of heat stress and water deficit was evaluated in plants previously exposed to heat stress and compared to controls. Rosemary and sage were much more resistant than lemon balm, which died when stresses were combined. Despite stress pre-exposure not having any effect on plant performance in terms of Fv/Fm, MDA and relative water content in rosemary and sage, it resulted in higher α-tocopherol levels in both species. The hormonal response differed between species: while the hormonal content did not change in sage, rosemary showed increased ABA and decreased SA levels as a result of repeated stress exposure. Overall, different stress imprints particular to each species and stress scenario were found in α-tocopherol and hormone levels, which led to similar protective effects in rosemary and sage.  相似文献   

9.
The temperature optimum of photosynthesis coincides with the average daytime temperature in a species’ native environment. Moderate heat stress occurs when temperatures exceed the optimum, inhibiting photosynthesis and decreasing productivity. In the present study, the temperature response of photosynthesis and the potential for heat acclimation was evaluated for Camelina sativa, a bioenergy crop. The temperature optimum of net CO2 assimilation rate (A) under atmospheric conditions was 30–32?°C and was only slightly higher under non-photorespiratory conditions. The activation state of Rubisco was closely correlated with A at supra-optimal temperatures, exhibiting a parallel decrease with increasing leaf temperature. At both control and elevated temperatures, the modeled response of A to intercellular CO2 concentration was consistent with Rubisco limiting A at ambient CO2. Rubisco activation and photochemical activities were affected by moderate heat stress at lower temperatures in camelina than in the warm-adapted species cotton and tobacco. Growth under conditions that imposed a daily interval of moderate heat stress caused a 63?% reduction in camelina seed yield. Levels of cpn60 protein were elevated under the higher growth temperature, but acclimation of photosynthesis was minimal. Inactivation of Rubisco in camelina at temperatures above 35?°C was consistent with the temperature response of Rubisco activase activity and indicated that Rubisco activase was a prime target of inhibition by moderate heat stress in camelina. That photosynthesis exhibited no acclimation to moderate heat stress will likely impact the development of camelina and other cool season Brassicaceae as sources of bioenergy in a warmer world.  相似文献   

10.
Land snails are exposed to conditions of high ambient temperature and low humidity, and their survival depends on a suite of morphological, behavioral, physiological, and molecular adaptations to the specific microhabitat. We tested in six populations of the land snail Theba pisana whether adaptations to different habitats affect their ability to cope with thermal stress and their strategies of heat shock protein (HSP) expression. Levels of Hsp70 and Hsp90 in the foot tissue were measured in field-collected snails and after acclimation to laboratory conditions. Snails were also exposed to various temperatures (32 up to 54 °C) for 2 h and HSP messenger RNA (mRNA) levels were measured in the foot tissue and survival was determined. To test whether the physiological and molecular data are related to genetic parameters, we analyzed T. pisana populations using partial sequences of nuclear and mitochondrial DNA ribosomal RNA genes. We show that populations collected from warmer habitats were more thermotolerant and had higher constitutive levels of Hsp70 isoforms in the foot tissue. Quantitative real-time polymerase chain reaction (PCR) analysis indicated that hsp70 and hsp90 mRNA levels increased significantly in response to thermal stress, although the increase in hsp70 mRNA was larger compared to hsp90 and its induction continued up to higher temperatures. Generally, warm-adapted populations had higher temperatures of maximal induction of hsp70 mRNA synthesis and higher upper thermal limits to HSP mRNA synthesis. Our study suggests that Hsp70 in the foot tissue of T. pisana snails may have important roles in determining stress resistance, while Hsp90 is more likely implicated in signal transduction processes that are activated by stress. In the phylogenetic analysis, T. pisana haplotypes were principally divided into two major clades largely corresponding to the physiological ability to withstand stress, thus pointing to genetically fixed tolerance.  相似文献   

11.
The loss of flight ability has occurred thousands of times independently during insect evolution. Flight loss may be linked to higher molecular evolutionary rates because of reductions in effective population sizes (Ne) and relaxed selective constraints. Reduced dispersal ability increases population subdivision, may decrease geographical range size and increases (sub)population extinction risk, thus leading to an expected reduction in Ne. Additionally, flight loss in birds has been linked to higher molecular rates of energy-related genes, probably owing to relaxed selective constraints on energy metabolism. We tested for an association between insect flight loss and molecular rates through comparative analysis in 49 phylogenetically independent transitions spanning multiple taxa, including moths, flies, beetles, mayflies, stick insects, stoneflies, scorpionflies and caddisflies, using available nuclear and mitochondrial protein-coding DNA sequences. We estimated the rate of molecular evolution of flightless (FL) and related flight-capable lineages by ratios of non-synonymous-to-synonymous substitutions (dN/dS) and overall substitution rates (OSRs). Across multiple instances of flight loss, we show a significant pattern of higher dN/dS ratios and OSRs in FL lineages in mitochondrial but not nuclear genes. These patterns may be explained by relaxed selective constraints in FL ectotherms relating to energy metabolism, possibly in combination with reduced Ne.  相似文献   

12.
Sphagnum mosses are a fundamental component of bog vegetation in northern regions, where these plants play a major role in controlling important ecosystem processes. As heat waves are expected to become increasingly intense and frequent, especially in cold territories, it is important to improve our knowledge of heat resistance in Sphagnum species. We investigated the response to heat stress of S. fuscum and S. magellanicum. Three populations of the two species collected at different altitudes (1090 m, 1870 m and 2100 m) were grown at three daytime temperature levels: 25 °C (AT); 36 °C (MT); 43 °C (HT). The HT treatment decreased concentrations of chlorophyll and nitrogen in the plant tissues, which resulted in lower net CO2 exchange rates and quantum yield of PSII. The plants recovered significantly within six days, probably because temperature in the living tissue did not reach lethal thresholds because of the high water content in the plant tissues. Contrary to our main hypothesis, that S. magellanicum had greater resistance to high temperatures because of its more southern distribution, the two species showed much the same response patterns to heat stress. Supporting our second hypothesis, populations of both species originating from the highest site suffered somewhat stronger, although still reversible, damage when grown at HT. Heat stress brought about by heat waves will unlikely have differential effects on these two Sphagnum species. We also conclude that heat waves are unlikely to exert irreversible damage to the Sphagnum layer in bog ecosystems if high temperatures are not coupled with drought.  相似文献   

13.
Chemical modifications of transfer RNA (tRNA) molecules are evolutionarily well conserved and critical for translation and tRNA structure. Little is known how these nucleoside modifications respond to physiological stress. Using mass spectrometry and complementary methods, we defined tRNA modification levels in six yeast species in response to elevated temperatures. We show that 2-thiolation of uridine at position 34 (s2U34) is impaired at temperatures exceeding 30°C in the commonly used Saccharomyces cerevisiae laboratory strains S288C and W303, and in Saccharomyces bayanus. Upon stress relief, thiolation levels recover and we find no evidence that modified tRNA or s2U34 nucleosides are actively removed. Our results suggest that loss of 2-thiolation follows accumulation of newly synthesized tRNA that lack s2U34 modification due to temperature sensitivity of the URM1 pathway in S. cerevisiae and S. bayanus. Furthermore, our analysis of the tRNA modification pattern in selected yeast species revealed two alternative phenotypes. Most strains moderately increase their tRNA modification levels in response to heat, possibly constituting a common adaptation to high temperatures. However, an overall reduction of nucleoside modifications was observed exclusively in S288C. This surprising finding emphasizes the importance of studies that utilize the power of evolutionary biology, and highlights the need for future systematic studies on tRNA modifications in additional model organisms.  相似文献   

14.
Genetic drift and selection are ubiquitous evolutionary forces acting to shape genetic variation in populations. While their relative importance has been well studied in plants and animals, less is known about their relative importance in fungal pathogens. Because agro-ecosystems are more homogeneous environments than natural ecosystems, stabilizing selection may play a stronger role than genetic drift or diversifying selection in shaping genetic variation among populations of fungal pathogens in agro-ecosystems. We tested this hypothesis by conducting a Q ST/F ST analysis using agricultural populations of the barley pathogen Rhynchosporium commune. Population divergence for eight quantitative traits (Q ST) was compared with divergence at eight neutral microsatellite loci (F ST) for 126 pathogen strains originating from nine globally distributed field populations to infer the effects of genetic drift and types of selection acting on each trait. Our analyses indicated that five of the eight traits had Q ST values significantly lower than F ST, consistent with stabilizing selection, whereas one trait, growth under heat stress (22°C), showed evidence of diversifying selection and local adaptation (Q ST>F ST). Estimates of heritability were high for all traits (means ranging between 0.55–0.84), and average heritability across traits was negatively correlated with microsatellite gene diversity. Some trait pairs were genetically correlated and there was significant evidence for a trade-off between spore size and spore number, and between melanization and growth under benign temperature. Our findings indicate that many ecologically and agriculturally important traits are under stabilizing selection in R. commune and that high within-population genetic variation is maintained for these traits.  相似文献   

15.
Experiments and field trials have shown that the intracellular bacterium Wolbachia may be introduced into populations of the mosquito Aedes aegypti, the primary vector for dengue fever. In the absence of Wolbachia, a mosquito acquiring the dengue virus from an infected human enters an exposed (infected but not infectious) period before becoming infectious itself. A Wolbachia-infected mosquito that acquires dengue (i) may have a reduced lifespan, so that it is less likely to survive the exposed period and become infectious, and (ii) may have a reduced ability to transmit dengue, even if it has survived the exposed period. Wolbachia introduction has therefore been suggested as a potential dengue control measure. We set up a mathematical model for the system to investigate this suggestion and to evaluate the desirable properties of the Wolbachia strain to be introduced. We show that Wolbachia has excellent potential for dengue control in areas where R 0 is not too large. However, if R 0 is large, Wolbachia strains that reduce but do not eliminate dengue transmission have little effect on endemic steady states or epidemic sizes. Unless control measures to reduce R 0 by reducing mosquito populations are also put in place, it may be worth the extra effort in such cases to introduce Wolbachia strains that eliminate dengue transmission completely.  相似文献   

16.
Although the impact of warming on winter limitation of aphid populations is reasonably well understood, the impacts of hot summers and heat wave events are less clear. In this study, we address this question through a detailed analysis of the thermal ecology of three closely related aphid species: Myzus persicae, a widespread, polyphagous temperate zone pest, Myzus polaris, an arctic aphid potentially threatened by climate warming, and, Myzus ornatus, a glasshouse pest that may benefit from warming. The upper lethal limits (ULT50) and heat coma temperatures of the aphid species reared at both 15 and 20 °C did not differ significantly, suggesting that heat coma is a reliable indicator of fatal heat stress. Heat coma and CTmax were also measured after aphids were reared at 10 and 25 °C for one and three generations. The extent of the acclimation response was not influenced by the number of generations. Acclimation increased CTmax with rearing temperature for all species. The acclimation temperature also influenced heat coma; this relationship was linear for M. ornatus and M. polaris but non-linear for M. persicae (increased tolerance at 10 and 25 °C). Bacteria known generically as secondary symbionts can promote thermal tolerance of aphids, but they were not detected in the aphids studied here. Assays of optimum development temperature were also performed for each species. All data indicate that M. persicae has the greatest tolerance of high temperatures.  相似文献   

17.
BackgroundSex plays a key role in an individual’s immune response against pathogenic challenges such that females fare better when infected with certain pathogens. It is thought that sex hormones impact gene expression in immune cells and lead to sexually dimorphic responses to pathogens. We predicted that, in the presence of E. coli gram-negative lipopolysaccharide (LPS), there would be a sexually dimorphic response in proinflammatory cytokine production and acute phase stress gene expression and that these responses might vary among different mouse strains and times in a pattern opposite to that of body temperature associated with LPS-induced shock.ResultsStatistical analysis using analyses of variance (ANOVAs) showed that the levels of the all six traits changed over time, generally peaking at 2 hours after LPS injection. Mt-1, Fgb, and IL-6 showed differences among strains, although these were time-specific. Sexual dimorphism was seen for Fgb and IL6, and was most pronounced at the latest time period (7 hours) where male levels exceeded those for females. Trends for all six cytokine/gene expression traits were negatively correlated with those for body temperatures.DiscussionThe higher levels of expression of Fgb and IL6 in males compared with females are consistent with the greater vulnerability of males to infection and subsequent inflammation. Temperature appears to be a useful proxy for mortality in endotoxic shock, but sexual dimorphism in cytokine and stress gene expression levels may persist after an LPS challenge even if temperatures in the two sexes are similar and have begun to stabilize.  相似文献   

18.
Thermal tolerance shapes organisms' physiological performance and limits their biogeographic ranges. Tropical terrestrial organisms are thought to live very near their upper thermal tolerance limits, and such small thermal safety factors put them at risk from global warming. However, little is known about the thermal tolerances of tropical marine invertebrates, how they vary across different life stages, and how these limits relate to environmental conditions. We tested the tolerance to acute heat stress of five life stages of the tropical sea urchin Lytechinus variegatus collected in the Bahía Almirante, Bocas del Toro, Panama. We also investigated the impact of chronic heat stress on larval development. Fertilization, cleavage, morula development, and 4‐armed larvae tolerated 2‐h exposures to elevated temperatures between 28–32°C. Average critical temperatures (LT50) were lower for initiation of cleavage (33.5°C) and development to morula (32.5°C) than they were for fertilization (34.4°C) or for 4‐armed larvae (34.1°C). LT50 was even higher (34.8°C) for adults exposed to similar acute thermal stress, suggesting that thermal limits measured for adults may not be directly applied to the whole life history. During chronic exposure, larvae had significantly lower survival and reduced growth when reared at temperatures above 30.5°C and did not survive chronic exposures at or above 32.3°C. Environmental monitoring at and near our collection site shows that L. variegatus may already experience temperatures at which larval growth and survival are reduced during the warmest months of the year. A published local climate model further suggests that such damaging warm temperatures will be reached throughout the Bahía Almirante by 2084. Our results highlight that tropical marine invertebrates likely have small thermal safety factors during some stages in their life cycles, and that shallow‐water populations are at particular risk of near future warming.  相似文献   

19.
To study the effects of heat shock on Deinococcus radiodurans and the role of DNA repair in high temperature resistance, different strains of D. radiodurans (wild type, recA, irrE, and pprA) were treated with temperatures ranging from 40 to 100?°C under wet and dry conditions. The mutant strains were more sensitive to wet heat of ≥60?°C and dry heat of ≥80?°C than the wild type. Both wild-type and DNA repair-deficient strains were much more resistant to high temperatures when exposed in the dried state as opposed to cells in suspension. Molecular staining techniques with the wild-type strain revealed that cells in the dried state were able to retain membrane integrity after drying and subsequent heat exposure, while heat-exposed cells in suspension showed significant loss of membrane integrity and respiration activity. The results suggest that the repair of DNA damage (e.g., DNA double-strand breaks by RecA and PprA) is essential after treatment with wet heat at temperatures >60?°C and dry heat >80?°C, and the ability of D. radiodurans to stabilize its plasma membrane during dehydration might represent one aspect in the protection of dried cells from heat-induced membrane damage.  相似文献   

20.
Jatropha curcas, one of the most important energy plant resources, is vulnerable to chilling. To evaluate the effects of chilling on photosynthesis of J. curcas and intraspecific differences in chilling tolerance, seedlings of twelve populations were treated with the temperature of 4–6°C for five consecutive nights with normal environmental temperature during the day. Night chilling treatment decreased light-saturated photosynthetic rate (P max) significantly for all populations. Stomatal limitation could not explain the decreased P max because intracellular CO2 concentration was not significantly reduced by night chilling in all populations (with only one exception). The decreased soluble-protein content, which may be related to the increased malondialdehyde (MDA) content, contributed to the decreased P max. The increased MDA content indicated that oxidative stress occurred after night chilling, which was associated with the larger decrease in P max compared with the decrease in actual photochemical efficiency of photosystem II, and the slight increase in thermal dissipation of excessive energy. After five-day recovery, MDA (with two exceptions) and P max still did not recover to the levels as those before night chilling treatment for all populations, indicating that J. curcas was vulnerable to chilling. Chilling tolerance was significantly different among populations. Populations originating from high elevations had greater chilling-tolerant abilities than populations originating from low elevations, showing a local adaptation to environmental temperatures of origins. Our study shed light on the possibility to find or breed chilling-tolerant genotypes of J. curcas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号