首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The R2R3-MYB gene family in Arabidopsis thaliana   总被引:25,自引:0,他引:25  
MYB factors represent a family of proteins that include the conserved MYB DNA-binding domain. In contrast to animals, plants contain a MYB-protein subfamily that is characterised by the R2R3-type MYB domain. 'Classical' MYB factors, which are related to c-Myb, seem to be involved in the control of the cell cycle in animals, plants and other higher eukaryotes. Systematic screens for knockout mutations in MYB genes, followed by phenotypic analyses and the dissection of mutants with interesting phenotypes, have started to unravel the functions of the 125 R2R3-MYB genes in Arabidopsis thaliana. R2R3-type MYB genes control many aspects of plant secondary metabolism, as well as the identity and fate of plant cells.  相似文献   

2.
The R2R3-MYB transcription factor gene family in maize   总被引:2,自引:0,他引:2  
Du H  Feng BR  Yang SS  Huang YB  Tang YX 《PloS one》2012,7(6):e37463
  相似文献   

3.
4.
5.
6.
cDNA fragments representing 21 R2R3-MYB genes were isolated by RT-PCR from the Dendrobiumorchid hybrid Woo Leng. Six full-length cDNA clones were obtained from a flower cDNA library, four of which, DwMYB1, DwMYB2, DwMYB8 and DwMYB10, represent typical plant R2R3-MYB genes. The conceptual DwMYB4 protein is truncated at the C-terminal region and contains the R2 repeat and the N-terminal half of the R3 repeat (R2R3). DwMYB4 expression is restricted to flowers. DwMYB9 contains an 8 amino acid N-terminal deletion in the R2 repeat (R2R3) and is expressed at high levels in mature flower and inflorescence, but at very low levels in young flower buds. DwMYB8 and DwMYB10 show similar expression patterns and share very high sequence similarity in the N-terminal part of the MYB domain. Analysis of amino acid substitution indicated that the pattern and type of substitution between Arabidopsis and maize are quite different. Maize may have more conserved substitution in the MYBBRH domain than Arabidopsis.  相似文献   

7.
8.
Using pairs of degenerate primers, we conducted a polymerase chain reaction to amplify the partial R2R3 domains of a majority of the R2R3-MYB family genes from Fagus crenata and identified a total of 85 independent gene fragments. By phylogenetic analysis of the deduced amino acid sequences, we found that many of the beech genes clustered with members from Arabidopsis, suggesting that these members represent beech orthologs of Arabidopsis. Some of the orthologous relationships became more evident when the complete gene structures were compared. Further, a large number of genes formed an additional and expanding cluster, independent from the other subgroups. These members were further compared with the Populus and Vitis family genes. In the epidermal cell fate clade, expansion of the beech family genes was comparable with those of the Populus and Vitis families, but the number of genes present in every subclade fluctuated extensively. Beech genes were abundant in the general flavonoid pathway regulation and TT2-related subclades; no beech gene was included in the anthocyanin-related subclade. Further analysis of the newly amplified regulatory genes to elucidate their functions may clarify the role of these genes in the evolution of plant species.  相似文献   

9.
MicroRNAs(miRNAs)是一类对基因表达进行负调控的非编码小分子RNA。通过前期对丹参miRNAs的高通量测序得到了一个miR858成熟序列,命名为Sm-miR858。序列比对显示,Sm-miR858与其它植物中已鉴定的miR858序列高度保守;Small RNA Northern blotting结果显示Sm-miR858在丹参根、茎和叶组织中均有表达,叶中表达水平相对较高。为了探究Sm-miR858在丹参体内的功能,首先利用在线生物软件对Sm-miR858的靶标基因进行预测,psRNATarget分析结果显示,Sm-miR858的潜在靶标基因共有13个,其中一个靶标基因SmPAP1作为一个重要的转录因子参与丹参酚酸类活性物质的代谢调控。为了验证Sm-miR858对SmPAP1的靶向作用,采用Real-time quantitative PCR依次对烟草瞬时表达体系和丹参组织器官中的Sm-miR858与SmPAP1之间共表达相关性进行分析与实验验证。Real-time qPCR结果显示,在丹参组织中SmPAP1与Sm-miR858共表达水平存在显著的负相关性。进而分别构建Sm-miR858和SmPAP1过表达植物载体,并在烟草叶片中进行瞬时共表达研究。结果显示,与对照相比,Sm-miR858过表达会导致SmPAP1的mRNA水平显著下降,说明在丹参体内Sm-miR858的确对SmPAP1基因表达进行靶向负调控。研究结果为阐明Sm-miR858在丹参体内酚酸类活性物质代谢途径调控作用奠定坚实的基础。  相似文献   

10.
11.
拟南芥R2R3-MYB类转录因子在环境胁迫中的作用   总被引:5,自引:0,他引:5  
乔孟  于延冲  向凤宁 《生命科学》2009,21(1):145-150
MYB转录因子是植物转录因子中最大的家族之一,以含有保守的MYB结构域为共同特征,分为三个亚族(R1/2-MYB、R2R3-MYB和R1R2R3-MYB),其中含有两个MYB结构域的R2R3-MYB成员最多,广泛参与植物次生代谢调控、细胞形态发生、胁迫应答、分生组织形成及细胞周期控制等。近年来,R2R3-MYB在植物逆境胁迫中的作用引起了广泛关注,本文综述了拟南芥R2R3-MYB蛋白在环境胁迫响应中作用的研究进展。  相似文献   

12.
13.
拟南芥R2R3-MYB家族第22亚族的结构与功能   总被引:2,自引:0,他引:2  
樊锦涛  蒋琛茜  邢继红  董金皋 《遗传》2014,36(10):985-994
拟南芥R2R3-MYB转录因子在拟南芥生长发育、代谢及响应生物和非生物胁迫的调控网络中具有重要作用。根据保守的氨基酸序列,R2R3-MYB转录因子被分为25个亚族,其中第22亚族包含AtMYB44、AtMYB77、AtMYB73和AtMYB70 4个基因,主要响应生物和非生物胁迫。文章从基因功能的相似性、基因表达的一致性和基因结构的保守性3方面综述了第22亚族的4个基因,并综合讨论了其在结构与功能上的冗余性和多样性。  相似文献   

14.
15.
《Phytochemistry》1987,26(10):2705-2707
The isotope ratio in α- and γ-patchoulenes in Pogostemon cablin, that has been fed with [2-14C, 4R-3H1]MVA, suggests that a proton loss is followed by a 1,2-alkyl shift and two 1,2-hydrogen shifts during the biosynthesis of these two sesquiterpene hydrocarbons. Whereas isotope ratios in β- and δ-patchoulene suggests that a proton loss is followed by one 1,2-hydrogen shift in β-patchoulene and two 1,2-hydrogen shifts in δ-patchoulene.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号