首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well-known that dead and dying neurons are quickly removed through phagocytosis by the brain's macrophages, the microglia. Therefore, neuronal loss during brain inflammation has always been assumed to be due to phagocytosis of neurons subsequent to their apoptotic or necrotic death. However, we report in this article that under inflammatory conditions in primary rat cultures of neurons and glia, phagocytosis actively induces neuronal death. Specifically, two inflammatory bacterial ligands, lipoteichoic acid or LPS (agonists of glial TLR2 and TLR4, respectively), stimulated microglial proliferation, phagocytic activity, and engulfment of ~30% of neurons within 3 d. Phagocytosis of neurons was dependent on the microglial release of soluble mediators (and peroxynitrite in particular), which induced neuronal exposure of the eat-me signal phosphatidylserine (PS). Surprisingly, however, eat-me signaling was reversible, so that blocking any step in a phagocytic pathway consisting of PS exposure, the PS-binding protein milk fat globule epidermal growth factor-8, and its microglial vitronectin receptor was sufficient to rescue up to 90% of neurons without reducing inflammation. Hence, our data indicate a novel form of inflammatory neurodegeneration, where inflammation can cause eat-me signal exposure by otherwise viable neurons, leading to their death through phagocytosis. Thus, blocking phagocytosis may prevent some forms of inflammatory neurodegeneration, and therefore might be beneficial during brain infection, trauma, ischemia, neurodegeneration, and aging.  相似文献   

2.
We have studied glial activation in rat cerebellar neuronal-glial cultures after inducing neuronal death using various stimuli. Cultures were exposed to 100 microm glutamate for 20 min, which induces excitotoxic neuronal death, or to potassium/serum deprivation, which induces apoptosis of granule neurons. We evaluated alterations in several parameters related to glial activation: nuclear factor-kappaB activation, nitric oxide and tumour necrosis factor-alpha production, which are associated with a pro-inflammatory response, glial proliferation and phagocytic activity. Although the two experimental models of neuronal damage resulted in the death of most neuronal cells within 24 h, differences were observed in the response of the various glial parameters evaluated. While nitric oxide production was not detected in any case, tumour necrosis factor-alpha production, nuclear factor-kappaB activation and glial proliferation were only induced in the presence of excitotoxic neuronal death. However, phagocytosis was induced in both cases, although earlier in the case of apoptotic neuronal death. These results show that glial cells respond to excitotoxic neuronal death with an inflammatory response associated with proliferation and phagocytosis. In contrast, whilst glial cells do not produce pro-inflammatory molecules in the presence of apoptotic neuronal death, phagocytic activity is rapidly induced.  相似文献   

3.
Daxx is required for stress-induced cell death and JNK activation   总被引:5,自引:0,他引:5  
Daxx has been implicated in the modulation of apoptosis in response to various stimuli. In the nucleus, Daxx interacts and colocalizes with the promyelocytic leukemia protein (PML) into the PML-nuclear body. Moreover, overexpressed Daxx positively modulates FAS-ligand and TGFbeta-induced apoptosis. However, recent reports indicate that Daxx can also act as an antiapoptotic factor. As most studies on the role of Daxx in cell death have been conducted using tumour cell lines, we analysed the function of Daxx in physiological settings. We found that Daxx is induced upon exposure to ultraviolet (UV) irradiation and hydrogen peroxide treatment. We employed RNA interference to downregulate Daxx in primary fibroblasts. Remarkably, Daxx-depleted cells are resistant to cell death induced by both UV irradiation and oxidative stress. Furthermore, the downregulation of Daxx results in impaired MKK/c-Jun-N-terminal kinase (JNK) activation. This is the first evidence that Daxx promotes cell death and JNK activation in physiological conditions.  相似文献   

4.
Recent studies indicate that Toll-like receptors (TLRs), originally identified as infectious agent receptors, also mediate sterile inflammatory responses during tissue damage. In this study, we investigated the role of TLR2 in excitotoxic hippocampal cell death using TLR2 knock-out (KO) mice. TLR2 expression was up-regulated in microglia in the ipsilateral hippocampus of kainic acid (KA)-injected mice. KA-mediated hippocampal cell death was significantly reduced in TLR2 KO mice compared with wild-type (WT) mice. Similarly, KA-induced glial activation and proinflammatory gene expression in the hippocampus were compromised in TLR2 KO mice. In addition, neurons in organotypic hippocampal slice cultures (OHSCs) from TLR2 KO mouse brains were less susceptible to KA excitotoxicity than WT OHSCs. This protection is partly attributed to decreased expression of proinflammatory genes, such as TNF-α and IL-1β in TLR2 KO mice OHSCs. These data demonstrate conclusively that TLR2 signaling in microglia contributes to KA-mediated innate immune responses and hippocampal excitotoxicity.  相似文献   

5.
While a number of studies have documented the importance of microglia in central nervous system (CNS) response to injury, infection and in disease state, little is known regarding how the neuronal death initiates the cascades of secondary neuroinflammation. We have exploited an experimental model of Japanese encephalitis to better understand how neuronal death following viral infection initiates microglial activation following Japanese encephalitis virus infection. We have earlier shown that the altered expression of tumor necrosis factor receptor-1 (TNFR-1) and TNFR associated death domain (TRADD) following Japanese encephalitis virus infection regulates the downstream apoptotic cascades. Here we have reported that silencing TRADD expression with small-interfering RNA reduced neuronal apoptosis and subsequent microglial and astroglial activation and release of various pro-inflammatory mediators. Our findings suggest that the engagement of TNFR-1 and TRADD following Japanese encephalitis virus infection plays a crucial role in glial activation also and influences the outcome of viral pathogenesis.  相似文献   

6.
Although recent progresses have unveiled the diverse in vivo functions of LKB1, detailed molecular mechanisms governing these processes still remain enigmatic. Here, we showed that Drosophila LKB1 negatively regulates organ growth by caspase-dependent apoptosis, without affecting cell size and cell cycle progression. Through genetic screening for LKB1 modifiers, we discovered the JNK pathway as a novel component of LKB1 signaling; the JNK pathway was activated by LKB1 and mediated the LKB1-dependent apoptosis. Consistently, LKB1-null mutant was defective in embryonic apoptosis and displayed a drastic hyperplasia in the central nervous system; these phenotypes were fully rescued by ectopic JNK activation as well as wild-type LKB1 expression. Furthermore, inhibition of LKB1 resulted in epithelial morphogenesis failure, which was associated with a decrease in JNK activity. Collectively, our studies unprecedentedly elucidate JNK as the downstream mediator of the LKB1-dependent apoptosis, and provide a new paradigm for understanding the diverse LKB1 functions in vivo.  相似文献   

7.
8.
Multiple signaling pathways, including the c-Jun N-terminal kinase (JNK) pathway, are activated in myocardial ischemia and reperfusion (MI/R) and correlate with cell death. However, the role of the JNK pathway in MI/R-induced cell death is poorly understood. In a rabbit model, we found that ischemia followed by reperfusion resulted in JNK activation which could be detected in cytosol as well as in mitochondria. To address the functional role of the JNK activation, we examined the consequences of blockade of JNK activation in isolated cardiomyocytes under conditions of simulated ischemia. The JNK activity was stimulated approximately sixfold by simulated ischemia and reperfusion (simulated MI). When a dominant negative mutant of JNK kinase-2 (dnJNKK2), an upstream regulator of JNK, and JNK-interacting protein-1 (JIP-1) were expressed in myocytes by recombinant adenovirus, the activation of JNK by simulated MI was reduced 53%. Furthermore, the TNFalpha-activated JNK activity in H9c2 cells was completely abolished by dnJNKK2 and JIP-1. In correlation, when dnJNKK2 and JIP-1 were expressed in cardiomyocytes, both constructs significantly reduced cell death after simulated MI compared to vector controls. We conclude that activation of the JNK cascade is important for cardiomyocyte death in response to simulated ischemia.  相似文献   

9.
Eukaryotic peptidoglycan recognition proteins (PGRPs) are related to bacterial amidases. In Drosophila, PGRPs bind peptidoglycan and function as central sensors and regulators of the innate immune response. PGRP-LC/PGRP-LE constitute the receptor complex in the immune deficiency (IMD) pathway, which is an innate immune cascade triggered upon Gram-negative bacterial infection. Here, we present the functional analysis of the nonamidase, membrane-associated PGRP-LF. We show that PGRP-LF acts as a specific negative regulator of the IMD pathway. Reduction of PGRP-LF levels, in the absence of infection, is sufficient to trigger IMD pathway activation. Furthermore, normal development is impaired in the absence of functional PGRP-LF, a phenotype mediated by the JNK pathway. Thus, PGRP-LF prevents constitutive activation of both the JNK and the IMD pathways. We propose a model in which PGRP-LF keeps the Drosophila IMD pathway silent by sequestering circulating peptidoglycan.  相似文献   

10.
11.
Ye B  Yu WP  Thomas GM  Huganir RL 《FEBS letters》2007,581(23):4403-4410
GRASP-1 is a neuronally enriched protein that interacts with the AMPA-type glutamate receptor/GRIP complex. GRASP-1 can be cleaved by Caspase-3 in both normal and ischemic brains although the functional significance of this cleavage remains elusive. We investigated signal transduction pathways that might lie downstream of GRASP-1 and found that GRASP-1 potently activates JNK pathway signaling, with no effect on ERK signaling. Such JNK pathway activating activity requires binding of GRASP-1 to both JNK and the upstream JNK pathway activator MEKK-1. Furthermore, mutations that prevent Caspase 3-cleavage of GRASP-1 dramatically inhibit the JNK pathway activating activity of GRASP-1, suggesting a novel link between Caspase-3 activation and JNK pathway signaling. These results suggest that GRASP-1 serves as a scaffold protein to facilitate MEKK-1 activation of JNK signaling in neurons.  相似文献   

12.
The genetic tools available in Drosophila have facilitated our understanding of how apoptosis is regulated and executed in the context of the developing organism. All embryonic apoptosis is initiated by the activity of three genes, rpr, grim and hid. Each of these genes is independently regulated, allowing developmental apoptosis to be finely controlled. These initiators in turn activate the core apoptotic machinery, including the caspases. Drosophila counterparts to other conserved components of the apoptotic machinery have been recently identified, and we discuss how these may be integrated into the process of normal developmentally regulated cell death. We also outline the role that phagocytosis plays in the final stages of apoptosis and consider the molecular mechanisms guiding the elimination of apoptotic corpses.  相似文献   

13.
Caspase-2 activation is redundant during seizure-induced neuronal death   总被引:5,自引:0,他引:5  
Seizure-induced neuronal death may be under the control of the caspase family of cell death proteases. We examined the role of caspase-2 in a model of focally evoked limbic seizures with continuous EEG recording. Seizures were elicited by microinjection of kainic acid into the amygdala of the rat and terminated after 40 min by diazepam. Caspase-2 was constitutively present in brain, mostly within neurons, and was detected in both cytoplasm and nucleus. Cleaved caspase-2 (12 kDa) was detected immediately following seizure termination within injured ipsilateral hippocampus, contiguous with increased Val-Asp-Val-Ala-Asp (VDVADase) activity, a putative measure of activated caspase-2. Expression of receptor interacting protein (RIP)-associated Ich-1-homologous protein with death domain (RAIDD) was increased following seizures, whereas expression of RIP and tumor necrosis factor receptor associated protein with death domain (TRADD), other components thought to be linked to the caspase-2 activation and signaling mechanism, were unchanged. Intracerebroventricular administration of z-VDVAD-fluoromethyl ketone blocked seizure-induced caspase-2 activity but did not alter caspase-8 activity and failed to affect DNA fragmentation or neuronal death. These data support activation of caspase-2 following seizures but suggest that parallel caspase pathways may circumvent deficits in caspase-2 function to complete the cell death process.  相似文献   

14.
The Drosophila Jun N-terminal kinase (JNK) gene basket (bsk) promoter contains a DNA replication-related element (DRE)-like sequence, raising the possibility of regulation by the DNA replication-related element-binding factor (DREF). Chromatin immunoprecipitation assays with anti-DREF IgG showed the bsk gene promoter region to be effectively amplified. Luciferase transient expression assays revealed the DRE-like sequence to be important for bsk gene promoter activity, and knockdown of DREF decreased the bsk mRNA level and the bsk gene promoter activity. Furthermore, knockdown of DREF in the notum compartment of wing discs by pannier-GAL4 and UAS-DREFIR resulted in a split thorax phenotype. Monitoring of JNK activity in the wing disc by LacZ expression in a puckered (puc)-LacZ enhancer trap line revealed the reduction in DREF knockdown clones. These findings indicate that DREF is involved in regulation of Drosophila thorax development via actions on the JNK pathway.  相似文献   

15.
Drosophila TAB2 is required for the immune activation of JNK and NF-kappaB   总被引:1,自引:0,他引:1  
The TAK1 plays a pivotal role in the innate immune response of Drosophila by controlling the activation of JNK and NF-kappaB. Activation of TAK1 in mammals is mediated by two TAK1-binding proteins, TAB1 and TAB2, but the role of the TAB proteins in the immune response of Drosophila has not yet been established. Here, we report the identification of a TAB2-like protein in Drosophila called dTAB2. dTAB2 can interact with dTAK1, and stimulate the activation of the JNK and NF-kB signaling pathway. Furthermore, we have found that silencing of dTAB2 expression by dsRNAi inhibits JNK activation by peptidoglycans (PGN), but not by NaCl or sorbitol. In addition, suppression of dTAB2 blocked PGN-induced expression of antibacterial peptide genes, a function normally mediated by the activation of NF-kappaB signaling pathway. No significant effect on p38 activation by dTAB2 was found. These results suggest that dTAB2 is specifically required for PGN-induced activation of JNK and NF-kappaB signaling pathways.  相似文献   

16.
Deficiency in cystathionine beta synthase (CBS) leads to high plasma homocysteine concentrations and causes hyperhomocysteinemia, a common risk factor for vascular disease, stroke and possibly neurodegenerative diseases. Various neuronal diseases have been associated with hyperhomocysteinemia, but the molecular mechanisms of homocysteine toxicity are unknown. We investigated the pathways involved in the pathological process, by analyzing differential gene expression in neuronal tissues. We used a combination of differential display and cDNA arrays to identify genes differentially expressed during hyperhomocysteinemia in brain of CBS-deficient mice. In this murine model of hyperhomocysteinemia, both plasma and brain homocysteine concentrations were high. Several genes were found to be differentially expressed in the brains of CBS-deficient mice, and the identities of some of these genes suggested that the SAPK/JNK pathway was altered in the brains of CBS-deficient mice. We therefore investigated the activation of proteins involved in the SAPK/JNK cascade. JNK and c-Jun were activated in the hippocampal neurones of CBS-deficient mice, suggesting that the SAPK/JNK pathway may play an important role in the development of neuronal defects associated with hyperhomocysteinemia.  相似文献   

17.
Sun L  Yu MC  Kong L  Zhuang ZH  Hu JH  Ge BX 《Cellular signalling》2008,20(7):1329-1337
MAP (Mitogen-activated protein) kinases play an important role in regulating many critical cellular processes. The inactivation of MAP kinases is always accomplished by a family of dual-specificity phosphatases, termed MAPK phosphatases (MKPs). Here, we have identified a novel MKP-like protein, designated DMKP-4, from the Drosophila genome. DMKP-4 is a protein of 387 amino acids, with a dual-specificity phosphatase (DSP) catalytic domain. Recombinant protein DMKP-4 retains intrinsic phosphatase activity against chromogenic substrate pNPP. Overexpression of DMKP-4 inhibited the activation of ERK, JNK and p38 by H(2)O(2), sorbitol and heat shock in HEK293-T cells, and JNK activation in Drosophila S2 cells under PGN stimuli. "Knockdown" of DMKP-4 expression by RNAi significantly enhanced the PGN-stimulated activation of JNK, but not ERK nor p38. Further study revealed that DMKP-4 interacted specifically with JNK via its DSP domain. Mutation of Cys-126 to serine in the DSP domain of DMKP-4 not only eliminated its interaction with JNK, but also markedly reduced its phosphatase activity. Thus, DMKP-4 is a Drosophila homologue of mammalian MKPs, and may play important roles in the regulation of various developmental processes.  相似文献   

18.
The Drosophila proneural genes specify neuronal determination among cells within the ectoderm. Here we address the question of whether proneural genes also affect the specification of glia, the most abundant cell type in the nervous system. We provide evidence that the proneural gene daughterless is essential for the formation of two major classes of PNS glia. In contrast, the proneural genes in the achaete-scute complex have no detectable effect on the specification and differentiation of these PNS glia and certain CNS glia. We also show that, as with neuronal development, glial determination is restricted by the neurogenic genes neuralized, Delta, and the genes of the Enhancer of split complex. Finally, we demonstrate that prospero, a gene involved in neuronal differentiation, also affects glial development. These results demonstrate extensive overlap in the genetic control of glial and neuronal development.Abbreviations ß galactosidase - (ß-gal) Alkaline phosphatase - (AP) Central nervous system - (CNS) Peripheral nervous system - (PNS) Home domain binding sites - (HDS) Helix-loop-helix - (HLH) Peripheral glia - (PG) Exit glia - (EG) Dorsal roof glia - (DRG) Intersegmental glia - (ISG) Midline glia - (MG) chordotonal - (CH) Sensory mother cell  相似文献   

19.
Chen S  Xu Y  Xu B  Guo M  Zhang Z  Liu L  Ma H  Chen Z  Luo Y  Huang S  Chen L 《Journal of neurochemistry》2011,119(5):1108-1118
Cadmium (Cd), a toxic environmental contaminant, induces neurodegenerative diseases. Recently, we have shown that Cd elevates intracellular free calcium ion ([Ca(2+) ](i) ) level, leading to neuronal apoptosis partly by activating mitogen-activated protein kinases (MAPK) and mammalian target of rapamycin (mTOR) pathways. However, the underlying mechanism remains to be elucidated. In this study, we show that the effects of Cd-elevated [Ca(2+) ](i) on MAPK and mTOR network as well as neuronal cell death are through stimulating phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII). This is supported by the findings that chelating intracellular Ca(2+) with 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester or preventing Cd-induced [Ca(2+) ](i) elevation using 2-aminoethoxydiphenyl borate blocked Cd activation of CaMKII. Inhibiting CaMKII with KN93 or silencing CaMKII attenuated Cd activation of MAPK/mTOR pathways and cell death. Furthermore, inhibitors of mTOR (rapamycin), c-Jun N-terminal kinase (SP600125) and extracellular signal-regulated kinase 1/2 (U0126), but not of p38 (PD169316), prevented Cd-induced neuronal cell death in part through inhibition of [Ca(2+) ](i) elevation and CaMKII phosphorylation. The results indicate that Cd activates MAPK/mTOR network triggering neuronal cell death, by stimulating CaMKII. Our findings underscore a central role of CaMKII in the neurotoxicology of Cd, and suggest that manipulation of intracellular Ca(2+) level or CaMKII activity may be exploited for prevention of Cd-induced neurodegenerative disorders.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号