首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The resistance to detergents and detergent-induced tolerance of a gastrointestinal organism, Enterococcus faecalis ATCC 19433, were examined. The most remarkable observation was the rapid response of cells in contact with bile salts and sodium dodecyl sulfate (SDS). The killing by high concentrations of detergents was nearly instantaneous. A 5-s adaptation with moderate sublethal concentrations of bile salts or SDS (0.08 or 0.01%, respectively) was sufficient to induce significant adaptation against homologous lethal conditions (0.3% bile salts or 0.017% SDS). However, resistance to a subsequent lethal challenge progressively increased further to a maximum reached after 30 min of adaptation. Furthermore, extremely strong cross-resistances were observed with bile salts- and SDS-adapted cells. However, no relationship seems to exist between levels of tolerance and de novo-synthesized proteins, since blockage of protein synthesis during adaptation had no effect on induction of resistance to bile salts and SDS. We conclude that this induced tolerance to detergent stress is independent of protein synthesis. Nevertheless, the stress-induced protein patterns of E. faecalis ATCC 19433 showed significant modifications. The rates of synthesis of 45 and 34 proteins were enhanced after treatments with bile salts and SDS, respectively. In spite of the overlap of 12 polypeptides, the protein profiles induced by the two detergents were different, suggesting that these detergents trigger different responses in E. faecalis. Therefore, bile salts cannot be substituted for SDS in biochemical detergent shock experiments with bacteria.  相似文献   

2.
Small multidrug resistance (SMR) protein family member, SugE, is an integral inner membrane protein that confers host resistance to antiseptic quaternary cation compounds (QCC). SugE studies generally focus on its resistance to limited substrates in comparison to SMR protein EmrE. This study examines the conformational characteristics of SugE protein in two detergents, sodium dodecyl sulphate (SDS) and dodecyl maltoside (DDM), commonly used to study SMR proteins. The influence of cetylpyridinium (CTP) and cetrimide (CET) using SugE aromatic residues (4W, 2Y, 1F) as intrinsic spectroscopic probes was also determined. Organically extracted detergent solubilized Escherichia coli SugE protein was examined by SDS-Tricine PAGE and various spectroscopic techniques. SDS-Tricine PAGE analysis of SugE in either detergent demonstrates the protein predominates as a monomer but also dimerizes in SDS. Far-UV region circular dichroism (CD) analysis determined that the overall α-helix content SugE in SDS and DDM was almost identical and unaltered by QCC. Near-UV region CD, fluorescence, and second-derivative ultraviolet absorption (SDUV) indicated that only DDM-SugE promoted hydrophobic environments for its Trp and Tyr residues that were perturbed by QCC addition. This study identified that only the tertiary structure of SugE protein in DDM is altered by QCC.  相似文献   

3.
The protein composition of Escherichia coli W3110 grown in the presence and absence of 5% sodium dodecyl sulfate (SDS) was examined by two-dimensional gel electrophoresis. In SDS-grown cells, at least 4 proteins were turned on, 13 were turned off, 15 were elevated, and 15 were depressed. The 19 unique and elevated SDS-induced spots constituted 7.91% of the total 35S-labeled protein. There was no apparent overlap between these 19 detergent (SDS) stress proteins and those of other known bacterial stress responses. The detergent stress stimulon is a distinct and independent stimulon. Its physiological relevance probably derives from the presence of bile salts in animal gastrointestinal tracts.  相似文献   

4.
5.
Holdsworth SR  Law CJ 《Biochimie》2012,94(6):1334-1346
Multidrug resistance (MDR) occurs when bacteria simultaneously acquire resistance to a broad spectrum of structurally dissimilar compounds to which they have not previously been exposed. MDR is principally a consequence of the active transport of drugs out of the cell by proteins that are integral membrane transporters. We characterised and purified the putative Escherichia coli MDR transporter, MdtM, a 410 amino acid residue protein that belongs to the large and ubiquitous major facilitator superfamily. Functional characterisation of MdtM using growth inhibition and whole cell transport assays revealed its role in intrinsic resistance of E. coli cells to the antimicrobials ethidium bromide and chloramphenicol. Site-directed mutagenesis studies implied that the MdtM aspartate 22 residue and the highly conserved arginine at position 108 play a role in proton recognition. MdtM was homologously overexpressed and purified to homogeneity in dodecyl-β-D-maltopyranoside detergent solution and the oligomeric state and stability of the protein in a variety of detergent solutions was investigated using size-exclusion HPLC. Purified MdtM is monomeric and stable in dodecyl-β-D-maltopyranoside solution and binds chloramphenicol with nanomolar affinity in the same detergent. This work provides a firm foundation for structural studies on this class of multidrug transporter protein.  相似文献   

6.
Escherichia coli EmrE protein is the archetypical member of the small multidrug resistance protein family in bacteria and confers host resistance to a wide assortment of toxic quaternary cation compounds by secondary active efflux. This protein can form a variety of multimers under various membrane mimetic conditions, and the consensus of most biochemical and biophysical studies indicate that the active form is a dimer. The purpose of this study is to characterize the conformation of organically extracted detergent solubilized EmrE protein known to predominate as monomer yet demonstrates ligand binding ability. Active site EmrE-E14 replacements were also examined as functionally inactive controls for this study. EmrE was solubilized in detergents, sodium dodecyl sulfate (SDS) and dodecyl maltoside (DDM), and protein conformation was examined in the presence of four known quaternary cation compound (QCC) substrates, tetraphenyl phosphonium (TPP), methyl viologen, cetylpyridinium, and ethidium. SDS-Tricine PAGE analysis of both detergent solubilized proteins revealed that DDM-EmrE preparations enhanced the formation of dimer (and in some cases trimer) forms in the presence of all four QCC above 25 QCC:1 EmrE molar ratios. Examination of EmrE and its active site variant tertiary structures in DDM by circular dichroism spectropolarimetry, intrinsic Trp fluorescence quenching and second order derivative ultraviolet absorbance revealed that the variant fails to bind TPP but interacts with all other compounds. The results of this study show that monomeric detergent solubilized EmrE is capable of forming multimeric complexes that are enhanced by chemically diverse QCCs.  相似文献   

7.
Our results show that the noncovalent dye 9-diethylamino-5H-benzo[alpha]phenoxazine-5-one (Nile red) can be used as a fluorescent probe to study the hydrophobic properties of proteins associated with the anionic detergent sodium dodecyl sulfate (SDS). Nile red can interact with both SDS micelles and protein-SDS complexes. The enhancement of Nile red fluorescence observed with diverse types of proteins occurs at SDS concentrations lower than the critical micelle concentration of this detergent. This is also observed using the covalent fluorophore rhodamine B isothiocyanate. Additional results obtained in studies in solution show that the fluorescence intensity and the spectral characteristics of Nile red associated with different proteins complexed with SDS are very similar. These spectroscopic similarities are probably related to the equivalent synchrotron X-ray scattering results found for various protein-SDS complexes in solution. The scattering results suggest that SDS induces the formation of complexes in which the basic structural properties are independent of the different initial structures of native proteins. We speculate that Nile red is bound to regions with equivalent hydrophobic characteristics located in the uniform structures produced by the association of SDS with proteins.  相似文献   

8.
Repeated hand washing with a detergent solution containing 0·75% chlorhexidine digluconate was found to cause a large reduction in the resident skin flora which was slightly though significantly smaller than that caused by the use of 3% hexachlorophane liquid soap containing a phenolic preservative, chlorocresol 0·3%. Both agents caused a greater immediate reduction of bacteria after a single hand washing than the hexachlorophane liquid soap without a phenolic additive had shown in earlier experiments; the soap base containing chlorocresol 0·3% but no hexachlorophane was also found to cause a large reduction in skin flora. The chlorhexidine detergent solution had no residual disinfectant action on the skin after rinsing and drying the hands.Disinfection of an operation site for two minutes with povidone-iodine containing 1% available iodine in 70% ethyl alcohol caused about as great a reduction in resident flora as a similar treatment with alcoholic 0·5% chlorhexidine. Both treatments were more effective than disinfection with aqueous 1% cetrimide or 0·1% benzalkonium chloride solutions.  相似文献   

9.
This study describes the interaction between sodium dodecyl sulfate (SDS) and membrane proteins reconstituted into large unilamellar lipid vesicles and detergent micelles studied by circular dichroism (CD) and polarity sensitive probe labeling. Specifically, we carried out a comparative study of two aquaporins with high structural homology SoPIP2;1 and AqpZ using identical reconstitution conditions. Our CD results indicate that SDS, when added to membrane-reconstituted aquaporins in concentrations below the SDS critical micelle concentration (CMC, ~8mM), causes helical rearrangements of both aquaporins. However, we do not find compelling evidence for unfolding. In contrast when SDS is added to detergent stabilized aquaporins, SoPIP2;1 partly unfolds, while AqpZ secondary structure is unaffected. Using a fluorescent polarity sensitive probe (Badan) we show that SDS action on membrane reconstituted SoPIP2;1 as well as AqpZ is associated with initial increased hydrophobic interactions in protein transmembrane (TM) spanning regions up to a concentration of 0.1× CMC. At higher SDS concentrations TM hydrophobic interactions, as reported by Badan, decrease and reach a plateau from SDS CMC up to 12.5× CMC. Combined, our results show that SDS does not unfold neither SoPIP2;1 nor AqpZ during transition from a membrane reconstituted form to a detergent stabilized state albeit the native folds are changed.  相似文献   

10.
Otzen DE 《Biophysical journal》2002,83(4):2219-2230
The 101-residue monomeric protein S6 unfolds in the anionic detergent sodium dodecyl sulfate (SDS) above the critical micelle concentration, with unfolding rates varying according to two different modes. Our group has proposed that spherical micelles lead to saturation kinetics in unfolding (mode 1), while cylindrical micelles prevalent at higher SDS concentrations induce a power-law dependent increase in the unfolding rate (mode 2). Here I investigate in more detail how micellar properties affect protein unfolding. High NaCl concentrations, which induce cylindrical micelles, favor mode 2. This is consistent with our model, though other effects such as electrostatic screening cannot be discounted. Furthermore, unfolding does not occur in mode 2 in the cationic detergent LTAB, which is unable to form cylindrical micelles. A strong retardation of unfolding occurs at higher LTAB concentrations, possibly due to the formation of dead-end protein-detergent complexes. A similar, albeit much weaker, effect is seen in SDS in the absence of salt. Chymotrypsin inhibitor 2 exhibits the same modes of unfolding in SDS as S6, indicating that this type of protein unfolding is not specific for S6. The unfolding process in mode 1 has an activation barrier similar in magnitude to that in water, while the activation barrier in mode 2 is strongly concentration-dependent. The strong pH-dependence of unfolding in SDS and LTAB suggests that the rate of unfolding in anionic detergent is modulated by repulsion between detergent headgroups and anionic side chains, while cationic side chains modulate unfolding rates in cationic detergents.  相似文献   

11.
Quantitative studies of membrane protein folding and unfolding can be difficult because of difficulties with efficient refolding as well as a pronounced propensity to aggregate. However, mixed micelles, consisting of the anionic detergent sodium dodecyl sulfate and the nonionic detergent dodecyl maltoside facilitate reversible and quantitative unfolding and refolding. The 4-transmembrane helix protein DsbB from the inner membrane of Escherichia coli unfolds in mixed micelles according to a three-state mechanism involving an unfolding intermediate I. The temperature dependence of the kinetics of this reaction between 15 degrees and 45 degrees C supports that unfolding from I to the denatured state D is accompanied by a significant decrease in heat capacity. For water-soluble proteins, the heat capacity increases upon unfolding, and this is generally interpreted as the increased binding of water to the protein as it unfolds, exposing more surface area. The decrease in DsbB's heat capacity upon unfolding is confirmed by independent thermal scans. The decrease in heat capacity is not an artifact of the use of mixed micelles, since the water soluble protein S6 shows conventional heat-capacity changes in detergent. We speculate that it reflects the binding of SDS to parts of DsbB that are solvent-exposed in the native DM-bound state. This implies that the periplasmic loops of DsbB are relatively unstructured. This anomalous thermodynamic behavior has not been observed for beta-barrel membrane proteins, probably because they do not bind SDS so extensively. Thus the thermodynamic behavior of membrane proteins appears to be intimately connected to their detergent-binding properties.  相似文献   

12.
The mechanisms of interaction between non-ionic or cationic surfactants with Escherichia coli K-12 cell membranes were studied using an approach based on the registration of changes in the membrane permeability to ethidium bromide, a fluorescent dye for nucleic acids. Triton X-100, a non-ionic detergent, was shown to exert no effect on the permeability of intact cell membranes. Triton X-100 interacted with the bacteria only after treatment with EDTA, a complexing agent for bivalent cations. Cetyltrimethyl ammonium bromide increased the permeability to ethidium bromide and the action of this cationic detergent did not require the pretreatment with the complexing agent. SDS, an anionic detergent, damaged E. coli K-12 and this could be registered by the lowering of intensity of light scattering by the bacterial suspension. The surface charge of E. coli K-12 cells was shown to influence the interaction of ionic detergents with bacterial cell membranes. Its variation by changing the pH of the incubation medium did not make E. coli K-12 sensitive to Triton X-100.  相似文献   

13.
Unfolding of beta-sheet proteins in SDS   总被引:1,自引:0,他引:1       下载免费PDF全文
Beta-sheet proteins are particularly resistant to denaturation by sodium dodecyl sulfate (SDS). Here we compare unfolding of two beta-sandwich proteins TNfn3 and TII27 in SDS. The two proteins show different surface electrostatic potential. Correspondingly, TII27 unfolds below the critical micelle concentration via the formation of hemimicelles on the protein surface, whereas TNfn3 only unfolds around the critical micelle concentration. Isothermal titration calorimetry confirms that unfolding of TII27 sets in at lower SDS concentrations, although the total number of bound SDS molecules is similar at the end of unfolding. In mixed micelles with the nonionic detergent dodecyl maltoside, where the concentration of monomeric SDS is insignificant, the behavior of the two proteins converges. TII27 unfolds more slowly than TNfn3 in SDS and follows a two-mode behavior. Additionally TNfn3 shows inhibition of SDS unfolding at intermediate SDS concentrations. Mutagenic analysis suggests that the overall unfolding mechanism is similar to that observed in denaturant for both proteins. Our data confirm the kinetic robustness of beta-sheet proteins toward SDS. We suggest this is related to the inability of SDS to induce significant amounts of alpha-helix structure in these proteins as part of the denaturation process, forcing the protein to denature by global rather than local unfolding.  相似文献   

14.
The cloned gene for the outer-membrane-bound phospholipase A from Escherichia coli was placed under control of the strong PL promoter of phage lambda. Induction of PL resulted in a 250-fold overexpression up to about 2% total cellular protein. This overproduced enzyme was indistinguishable from the wild-type enzyme. A homogeneous phospholiphase A preparation was obtained in high yield from overproducing bacteria, using the zwitterionic detergent C12-Sulfobetaine and anion-exchange chromatography. Detergent gradients were found to exert great influence on the elution characteristics. Considerations for the choice of optimal detergent gradients are discussed. The purified enzyme migrated as a single 29-kDa band in SDS/polyacrylamide gels, and required Ca(II) for activity. Maximum activity was displayed by enzyme samples taken from solutions with detergent concentrations near the critical micelle concentration. However, upon switching from high to optimal detergent concentration, maximum activity was restored in several hours, probably reflecting a slow conformational transition of the protein. Because the final pure protein was found to hydrolyze phospholipids in the intact erythrocyte membrane, a densely packed bilayer, we assume that this protein is in its biological native state.  相似文献   

15.
Two types of haemolytic activity of detergents   总被引:1,自引:0,他引:1  
The nonionic detergent Triton X-100 at concentrations of about 0.003 to 0.008% causes swelling followed by the haemolysis of erythrocytes suspended in 160 mM KCl. The rate of haemolysis increases with the increase in detergent concentration. Finally all the erythrocytes are haemolysed. The resistance of erythrocytes to this detergent decreases with an increase in temperature. The effect of Triton X-100 is explained by increased membrane permeability to KCl and colloid osmotic haemolysis. The anionic detergent, sodium dodecyl sulfate (SDS), at concentrations of about 0.003 to 0.001% causes the haemolysis of a certain number of erythrocytes. This number increases with an increase in detergent concentration. The resistance of erythrocytes to SDS increases with an increase in temperature. The effect of SDS is explained by direct disruption of membranes by the detergent.  相似文献   

16.
Antimicrobial hand soaps provide a greater bacterial reduction than nonantimicrobial soaps. However, the link between greater bacterial reduction and a reduction of disease has not been definitively demonstrated. Confounding factors, such as compliance, soap volume, and wash time, may all influence the outcomes of studies. The aim of this work was to examine the effects of wash time and soap volume on the relative activities and the subsequent transfer of bacteria to inanimate objects for antimicrobial and nonantimicrobial soaps. Increasing the wash time from 15 to 30 seconds increased reduction of Shigella flexneri from 2.90 to 3.33 log(10) counts (P = 0.086) for the antimicrobial soap, while nonantimicrobial soap achieved reductions of 1.72 and 1.67 log(10) counts (P > 0.6). Increasing soap volume increased bacterial reductions for both the antimicrobial and the nonantimicrobial soaps. When the soap volume was normalized based on weight (approximately 3 g), nonantimicrobial soap reduced Serratia marcescens by 1.08 log(10) counts, compared to the 3.83-log(10) reduction caused by the antimicrobial soap (P < 0.001). The transfer of Escherichia coli to plastic balls following a 15-second hand wash with antimicrobial soap resulted in a bacterial recovery of 2.49 log(10) counts, compared to the 4.22-log(10) (P < 0.001) bacterial recovery on balls handled by hands washed with nonantimicrobial soap. This indicates that nonantimicrobial soap was less active and that the effectiveness of antimicrobial soaps can be improved with longer wash time and greater soap volume. The transfer of bacteria to objects was significantly reduced due to greater reduction in bacteria following the use of antimicrobial soap.  相似文献   

17.
We studied the role of membrane-derived oligosaccharides (MDOs) in sodium dodecyl sulfate (SDS) resistance by Escherichia coli. MDOs are also known as osmoregulated periplasmic glucans. Wild-type E. coli MC4100 grew in the presence of 10% SDS whereas isogenic mdoA and mdoB mutants could not grow above 0.5% SDS. Similarly, E. coli DF214, a mutant (pgi, zwf) unable to grow on glucose, exhibited conditional sensitivity to SDS in that it grew in gluconate and glucose or galactose but not in gluconate and mannose or sorbose. DF214 requires both gluconate and glucose/galactose because the gluconate is used for energy production, while glucose/galactose is used for MDO synthesis. Finally, the fate of E. coli cells subjected to SDS shock either during growth or when used as an inoculum is dependent on the presence or absence of sufficient MDOs. In both cases, cells grown under high-osmolarity (low-MDO) conditions were rapidly lysed by 5% SDS. Based on findings from a wild-type E. coli (MC4100), two mdo mutants and strain DF214 we conclude that MDOs are required for SDS resistance.  相似文献   

18.
Mitochondria-mediated apoptosis is regulated by proteins of the Bcl-2 superfamily, most of which contain a C-terminal hydrophobic domain that plays a role in membrane targeting. Experiments with BNIP3 have implicated the transmembrane (TM) domain in its proapoptotic function, homodimerization, and interactions with Bcl-2 and Bcl-xL. We show that the BNIP3 TM domain self-associates strongly in Escherichia coli cell membranes and causes reversible dimerization of a soluble protein in the detergent SDS when expressed as an in-frame fusion. Limited mutational analysis identifies specific residues that are critical for BNIP3 TM self-association in membranes, and these residues are also important for dimerization in SDS micelles, suggesting that the self-association observed in membranes is preserved in detergent. The effects of sequence changes at positions Ala176 and Gly180 suggest that the BNIP3 TM domain associates using a variant of the GXXXG motif previously shown to be important in the dimerization of glycophorin A. The importance of residue His173 in BNIP3 TM domain dimerization indicates that polar residues, which have been implicated in self-association of model TM peptides, can act in concert with the AXXXG motif to stabilize TM domain interactions. Our results demonstrate that the hydrophobic C-terminal TM domain of the pro-apoptotic BNIP3 protein dimerizes tightly in lipidic environments, and that this association has a strong sequence dependence but is independent of the identity of flanking regions. Thus, the transmembrane domain represents another region of the Bcl-2 superfamily of proteins that is capable of mediating strong and specific protein-protein interactions.  相似文献   

19.
Sodium dodecyl sulfate (SDS) is used more often than any other detergent as an excellent denaturing or "unfolding" detergent. However, formation of ordered structure (alpha-helix or beta-sheet) in certain peptides is known to be induced by interaction with SDS micelles. The SDS-induced structures formed by these peptides are amphiphilic, having both a hydrophobic and a hydrophilic face. Previous work in this area has revealed that SDS induces helical folding in a wide variety of non-helical proteins. Here, we describe the interaction of several structurally unrelated proteins with SDS micelles and the correlation of these structures to helical amphiphilic regions present in the primary sequence. It is likely that the ability of native nonordered protein structures to form induced amphiphilic ordered structures is rather common.  相似文献   

20.
膜蛋白在诸多生物过程,如呼吸作用、光合作用、信号识别和分子转运等方面发挥着重要作用,近年来,去污剂的快速发展,在一定程度上极大地推动了膜蛋白研究的进展。去污剂广泛应用于膜蛋白的提取、增溶、纯化、理化性质及结构研究,然而如何选择合适的去污剂往往是一项复杂的任务。本文从以下两个方面入手系统地描述了去污剂的重要理化性质及其在膜蛋白结构功能研究中的应用,(1)去污剂结构及其对去污剂性质和水溶性的影响,去污剂形成胶束的条件及影响去污剂胶束形成的其他因素。希望这些关于去污剂的基本性质和参数的介绍,可以为相关科研工作者选用去污剂提供一个理论依据。(2)去污剂抽提膜蛋白的流程和注意细节,去污剂对膜蛋白纯化时分子量测定的影响,膜蛋白研究中去污剂的置换与去除,膜蛋白结构、功能研究案例归纳。希望这些应用细节、课题研究,可以为相关科研工作者研究膜蛋白结构功能时提供一个经验借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号