首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NovW, novU and novS genes have been characterized as dTDP-4-keto-6-deoxy-D-glucose 3-epimerase, C-5 methyltransferase and dTDP-glucose 4-ketoreductase, respectively involved in noviose biosynthetic pathway. We have cloned and expressed the Streptomyces spheroids novWUS genes in S. venezuelae YJ003-OTBP1. This established the function of novWUS and, at the same time, it also proved that the noviosyl derivative of 10-deoxymethynolide(2)/narbonolide(4) obtained from S. venezuelae YJ003-OTBP1 is a novel hybrid antibiotic.  相似文献   

2.
We have cloned and characterized a gene cluster for anthracycline biosynthesis from Streptomyces galilaeus. This cluster, 15-kb long, includes eight genes involved in the deoxyhexose biosynthesis pathway, a gene for a glycosyltransferase and one for an activator, as well as two genes involved in aglycone biosynthesis. Gene disruption targeted to the activator gene blocked production of aclacinomycins in S. galilaeus. Plasmid pSgs4, containing genes for a glycosyltransferase (aknS), an aminomethylase (aknX), a glucose-1-phosphate thymidylyltransferase (akn Y) and two genes for unidentified glycosylation functions (aknT and aknV), restored the production of aclacinomycins in the S. galilaeus mutants H063, which accumulates aklavinone, and H054, which produces aklavinone with rhodinose and deoxyfucose residues. Furthermore, pSgs4 directed the production of L-rhamnosyl-epsilon-rhodomycinone and L-daunosaminyl-epsilon-rhodomycinone in S. peucetius strains that produce epsilon-rhodomycinone endogenously. Subcloning of the gene cluster was carried out in order to further define the genes that are responsible for complementation and hybrid anthracycline generation.  相似文献   

3.
4.
5.
A 6.5 kb DNA fragment containing a chloramphenicol-resistance gene of Streptomyces venezuelae ISP5230 was cloned in Streptomyces lividans M252 using the high-copy-number plasmid vector pIJ702. The gene was located within a 2.4 kb KpnI-SstI fragment of the cloned DNA and encoded an enzyme (chloramphenicol hydrolase) that catalysed removal of the dichloroacetyl moiety from the antibiotic. The deacylated product, p-nitrophenylserinol, was metabolized to p-nitrobenzyl alcohol and other compounds by enzymes present in S. lividans M252. Examination of the genomic DNA from several sources using the cloned 6.5 kb SstI fragment from S. venezuelae ISP5230 as a probe showed a hybridizing region in the DNA from S. venezuelae 13s but none in the DNA from another chloramphenicol producer, Streptomyces phaeochromogenes NRRLB 3559. The resistance phenotype was not expressed when the 6.5 kb SstI fragment or a subfragment was subcloned behind the lac-promoter of plasmid pTZ18R in Escherichia coli.  相似文献   

6.
7.
8.
Tylosin polyketide synthase (Tyl PKS) was heterologously expressed in an engineered strain of Streptomyces venezuelae bearing a deletion of pikromycin PKS gene cluster using two compatible low-copy plasmids, each under the control of a pikAI promoter. The mutant strain produced 0.5 mg/l of the 16-membered ring macrolactone, tylactone, after a 4-day culture, which is a considerably reduced culture period to reach the maximum production level compared to other Streptomyces hosts. To improve the production level of tylactone, several precursors for ethylmalonyl-CoA were fed to the growing medium, leading to a 2.8-fold improvement (1.4 mg/ml); however, switching the pikAI promoter to an actI promoter had no observable effect. In addition, a small amount of desosamine-glycosylated tylactone was detected from the extract of the mutant strain, revealing that the native glycosyltransferase DesVII displayed relaxed substrate specificity in accepting the 16-membered ring macrolactone to produce the glycosylated tylactone. These results demonstrate a successful attempt for a heterologous expression of Tyl PKS in S. venezuelae and introduce S. venezuelae as a rapid heterologous expression system for the production of secondary metabolites.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Antibiotics have, indeed, altered the course of human history as is evidenced by the increase in human life expectancy since the 1940s. Many of these natural compounds are produced by bacteria that, by necessity, must have efficient self‐resistance mechanisms. The methymycin/pikromycin producing species Streptomyces venezuelae, for example, utilizes β‐glucosylation of its macrolide products to neutralize their effects within the confines of the cell. Once released into the environment, these compounds are activated by the removal of the glucose moiety. In S. venezuelae, the enzyme responsible for removal of the sugar from the parent compound is encoded by the desR gene and referred to as DesR. It is a secreted enzyme containing 828 amino acid residues, and it is known to be a retaining glycosidase. Here, we describe the structure of the DesR/D ‐glucose complex determined to 1.4‐Å resolution. The overall architecture of the enzyme can be envisioned in terms of three regions: a catalytic core and two auxiliary domains. The catalytic core harbors the binding platform for the glucose ligand. The first auxiliary domain adopts a “PA14 fold,” whereas the second auxiliary domain contains an immunoglobulin‐like fold. Asp 273 and Glu 578 are in the proper orientation to function as the catalytic base and proton donor, respectively, required for catalysis. The overall fold of the core region places DesR into the GH3 glycoside hydrolase family of enzymes. Comparison of the DesR structure with the β‐glucosidase from Kluyveromyces marxianus shows that their PA14 domains assume remarkably different orientations.  相似文献   

16.
17.
18.
Yin  Shouliang  Li  Zilong  Wang  Xuefeng  Wang  Huizhuan  Jia  Xiaole  Ai  Guomin  Bai  Zishang  Shi  Mingxin  Yuan  Fang  Liu  Tiejun  Wang  Weishan  Yang  Keqian 《Applied microbiology and biotechnology》2016,100(24):10563-10572
Applied Microbiology and Biotechnology - Heterologous expression is an important strategy to activate biosynthetic gene clusters of secondary metabolites. Here, it is employed to activate and...  相似文献   

19.
Desosamine is a 3-(dimethylamino)-3,4,6-trideoxyhexose found in certain macrolide antibiotics such as the commonly prescribed erythromycin. Six enzymes are required for its biosynthesis in Streptomyces venezuelae. The focus of this article is DesV, which catalyzes the PLP-dependent replacement of a 3-keto group with an amino functionality in the fifth step of the pathway. For this study the three-dimensional structures of both the internal aldimine and the ketimine intermediate with glutamate were determined to 2.05 A resolution. DesV is a homodimer with each subunit containing 12 alpha-helical regions and 12 beta-strands that together form three layers of sheet. The structure of the internal aldimine demonstrates that the PLP-cofactor is held in place by residues contributed from both subunits (Asp 164 and Gln 167 from Subunit I and Tyr 221 and Asn 235 from Subunit II). When the ketimine intermediate is present in the active site, the loop defined by Gln 225 to Ser 228 from Subunit II closes down upon the active site. The structure of DesV is similar to another sugar-modifying enzyme referred to as PseC. This enzyme is involved in the biosynthesis of pseudaminic acid, which is a sialic acid-like nonulosonate found in the flagellin of Helicobacter pylori. In the case of PseC, however, the amino group is transferred to the C-4 rather than the C-3 position. Details concerning the structural analysis of DesV and a comparison of its molecular architecture to that of PseC are presented.  相似文献   

20.
The pili of Neisseria meningitidis are a key virulence factor, being major adhesins of this capsulate organism that contribute to specificity for the human host. Recently it has been reported that meningococcal pili are post-translationally modified by the addition of an O-linked trisaccharide, Gal (β1–4) Gal (α1–3) 2,4-diacetimido-2,4,6-trideoxyhexose. Using a set of random genomic sequences from N. meningitidis strain MC58, we have identified a novel gene homologous to a family of glycosyltransferases. A plasmid clone containing the gene was isolated from a genomic library of N. meningitidis strain MC58 and its nucleotide sequence determined. The clone contained a complete copy of the gene, here designated pglA (pilin glycosylation). Insertional mutations were constructed in pglA in a range of meningococcal strains with well-defined lipopolysaccharide (LPS) or pilin-linked glycan structures to determine whether pglA had a role in the biosynthesis of these molecules. There was no alteration in the phenotype of LPS from pglA mutant strains as judged by gel migration and the binding of monoclonal antibodies. In contrast, decreased gel migration of the pilin subunit molecules of pglA mutants was observed, which was similar to the migration of pilins of galE mutants of same strains, supporting the notion that pglA is a glycosyltransferase involved in the biosynthesis of the pilin-linked trisaccharide structure. The pglA mutation, like the galE mutation reported previously, had no effect on pilus-mediated adhesion to human epithelial or endothelial cells. Pilin from pglA mutants were unable to bind to monospecific antisera recognizing the Gal (β1–4) Gal structure, suggesting that PglA is a glycosyltransferase involved in the addition of galactose of the trisaccharide substituent of pilin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号