首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detergent extracts of whole cells of the Gram-positive, non-pathogenic, strictly aerobic bacterium Nocardia corynebacteroides contain channel-forming activity. The protein responsible for channel formation was identified using lipid bilayer experiments. It was purified to homogeneity and had an apparent molecular mass of about 134 kDa on SDS-PAGE when it was solubilized at 40 degrees C. When the 134 kDa protein was heated to 100 degrees C for 10 min in sample buffer, it dissociated into subunits with a molecular mass of about 23 kDa and focused at pI of 4.5 during isoelectric focusing. The pure 134 kDa protein was able to increase the specific conductance of artificial lipid bilayer membranes from phosphatidylcholine-phosphatidylserine mixtures by the formation of ion-permeable channels. The channels had an average single-channel conductance of 5.5 nS in 1 M KCl and were found to be cation-selective. Asymmetric addition of the 134 kDa protein to lipid bilayer membranes resulted in an asymmetric voltage-dependence. The analysis of the single-channel conductance as a function of cation radii using the Renkin correction factor and the effect of negative charges on channel conductance suggested that the diameter of the cell wall porin is about 1.0 nm. The channel characteristics of the cell wall channel of N. corynebacteroides were compared with those of other members of the mycolata. They share common features because they are composed of small molecular mass subunits and form large and water-filled channels.  相似文献   

2.
A channel-forming protein was identified in cell wall extracts of the Gram-positive, strictly aerobic bacterium Nocardia farcinica . The cell wall porin was purified to homogeneity and had an apparent molecular mass of about 87 kDa on tricine-containing SDS–PAGE. When the 87 kDa protein was boiled for a longer time in sodium dodecylsulphate (SDS) it dissociated into two subunits with molecular masses of about 19 and 23 kDa. The 87 kDa form of the protein was able to increase the specific conductance of artificial lipid bilayer membranes from phosphatidylcholine (PC) phosphatidylserine (PS) mixtures by the formation of ion-permeable channels. The channels had on average a single-channel conductance of 3.0 nS in 1 M KCl, 10 mM Tris-HCl, pH 8, and were found to be cation selective. Asymmetric addition of the cell wall porin to lipid bilayer membranes resulted in an asymmetric voltage dependence. The single-channel conductance was only moderately dependent on the bulk aqueous KCl concentration, which indicated point charge effects on the channel properties. The analysis of the single-channel conductance data in different salt solutions using the Renkin correction factor, and the effect of negative charges on channel conductance suggested that the diameter of the cell wall porin is about 1.4–1.6 nm. Channel-forming properties of the cell wall porin of N. farcinica were compared with those of mycobacteria and corynebacteria. The cell wall porins of these members of the order Actinomycetales share common features because they form large and water-filled channels that contain negative point charges.  相似文献   

3.
Detergent-solubilized cell wall extracts of the gram-positive, strictly aerobic bacterium Nocardia asteroides contain channel-forming activity as judged from reconstitution experiments using lipid bilayer membranes. The cell wall porin was identified as a protein with an apparent molecular mass of about 84 kDa based on SDS-PAGE. The porin was purified to homogeneity using preparative SDS-PAGE. The 84-kDa protein was no longer observed after heating in SDS buffer. The presumed dissociation products were not observed on SDS-polyacrylamide gels. The cell wall porin increased the specific conductance of artificial lipid bilayer membranes from phosphatidylcholine/phosphatidylserine mixtures by the formation of cation-selective channels, which had an average single-channel conductance of 3.0 nS in 1 M KCl. The single-channel conductance was only moderately dependent on the bulk aqueous KCl concentration, which indicated negative point charge effects on the channel properties. The analysis of the concentration dependence of the single-channel conductance using the effect of negative charges on channel conductance suggested that the diameter of the cell wall channel is about 1.4 nm. Asymmetric addition of the cell wall porin to lipid bilayer membranes resulted in an asymmetric voltage dependence. The cell wall channel switched into substates, when the cis side of the membrane, the side of the addition of the protein, had negative polarity. Positive potentials at the cis side had no influence on the conductance of the cell wall channel. Received: 23 September 1998 / Accepted: 9 December 1998  相似文献   

4.
In this communication it is demonstrated that the cell wall of the gram-positive bacterium Micromonospora purpurea contains a cell wall channel for the passage of hydrophilic solutes. The channel-forming protein was identified in sucrose step-density-gradient fractions of the cell envelope and in whole cell extracts using either organic solvent or detergent and the lipid bilayer technique. The fractions of the sucrose step-density centrifugation were assayed for NADH-oxidase activity and for the formation of ion-permeable channels in lipid bilayers. The highest NADH-oxidase activity and the highest channel-forming ability were found in different fractions. The cell wall fraction was identified by the presence of meso-diaminopimelic acid and contained an ion-permeable channel with the extremely high single-channel conductance of about 14 nS in 1 M KCl. The channel-forming unit was purified to homogeneity by FPLC on a HiTrap-Q column. It was identified as a heat- and SDS-resistant 200-kDa band on SDS-PAGE and formed the same general diffusion pores in lipid bilayer membranes as those formed by detergent extracts of the cell wall fraction of the sucrose step-density centrifugation. The channels were slightly selective for potassium ions over chloride, possibly caused by an excess of negative charges in or near the channel.  相似文献   

5.
We have identified in organic solvent extracts of whole cells of the gram-positive pathogen Rhodococcus equi two channel-forming proteins with different and complementary properties. The isolated proteins were able to increase the specific conductance of artificial lipid bilayer membranes made from phosphatidylcholine-phosphatidylserine mixtures by the formation of channels able to be permeated by ions. The channel-forming protein PorA(Req) (R. equi pore A) is characterized by the formation of cation-selective channels, which are voltage gated. PorA(Req) has a single-channel conductance of 4 nS in 1 M KCl and shows high permeability for positively charged solutes because of the presence of negative point charges. According to the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the protein has an apparent molecular mass of about 67 kDa. The analysis (using the effect of negative charges on channel conductance) of the concentration dependence of the single-channel conductance suggested that the diameter of the cell wall channel is about 2.0 nm. The second channel (formed by PorB(Req) [R. equi pore B]) shows a preferred movement of anions through the channel and is not voltage gated. This channel shows a single-channel conductance of 300 pS in 1 M KCl and is characterized by the presence of positive point charges in or near the channel mouth. Based on SDS-PAGE, the apparent molecular mass of the channel-forming protein is about 11 kDa. Channel-forming properties of the investigated cell wall porins were compared with those of others isolated from mycolic acid-containing actinomycetes. We present here the first report of a fully characterized anion-selective cell wall channel from a member of the order Actinomycetales.  相似文献   

6.
The gram-positive bacterium Mycobacterium phlei was treated with detergents. Reconstitution experiments using lipid bilayers suggested that the detergent extracts contain a channel forming protein. The protein was purified to homogeneity by preparative SDS-PAGE and identified as a protein with an apparent molecular mass of about 135 kDa. The channel-forming unit dissociated into subunits with a molecular mass of about 22 kDa when it was boiled in 80% dimethylsulfoxid (DMSO). The channel has on average a single channel conductance of 4.5 nS in 1 m KCl and is highly voltage-dependent in an asymmetric fashion when the protein is added to only one side of the membrane. Zero-current membrane potential measurements with different salts implied that the channel is highly cation-selective because of negative point charges in or near the channel mouth. Analysis of the single-channel conductance as a function of the hydrated cation radii using the Renkin correction factor and the effect of the negative point charges on the single-channel conductance suggest that the diameter of the cell wall channel is about 1.8 to 2.0 nm. The channel properties were compared with those of other members of the mycolata and suggest that these channels share common features. Southern blots demonstrated that the chromosome of M. phlei and other mycolata tested contain homologous sequences to mspA (gene of the cell wall porin of Mycobacterium smegmatis). Received: 22 December 2000/Revised: 10 April 2001  相似文献   

7.
The cell wall fraction of the gram-positive, nontoxic Corynebacterium diphtheriae strain C8r(−) Tox (= ATCC 11913) contained a channel-forming protein, as judged from reconstitution experiments with artificial lipid bilayer experiments. The channel-forming protein was present in detergent-treated cell walls and in extracts of whole cells obtained using organic solvents. The protein had an apparent molecular mass of about 66 kDa as determined on Tricine-containing sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and consisted of subunits having a molecular mass of about 5 kDa. Single-channel experiments with the purified protein suggested that the protein formed channels with a single-channel conductance of 2.25 nS in 1 M KCl. Further single-channel analysis suggested that the cell wall channel is wide and water filled because it has only slight selectivity for cations over anions and its conductance followed the mobility sequence of cations and anions in the aqueous phase. Antibodies raised against PorA, the subunit of the cell wall channel of Corynebacterium glutamicum, detected both monomers and oligomers of the isolated protein, suggesting that there are highly conserved epitopes in the cell wall channels of C. diphtheriae and PorA. Localization of the protein on the cell surface was confirmed by an enzyme-linked immunosorbent assay. The prospective homology of PorA with the cell wall channel of C. diphtheriae was used to identify the cell wall channel gene, cdporA, in the known genome of C. diphtheriae. The gene and its flanking regions were cloned and sequenced. CdporA is a protein that is 43 amino acids long and does not have a leader sequence. cdporA was expressed in a C. glutamicum strain that lacked the major outer membrane channels PorA and PorH. Organic solvent extracts of the transformed cells formed in lipid bilayer membranes the same channels as the purified CdporA protein of C. diphtheriae formed, suggesting that the expressed protein is able to complement the PorA and PorH deficiency of the C. glutamicum strain. The study is the first report of a cell wall channel in a pathogenic Corynebacterium strain.  相似文献   

8.
Cells of the Gram-positive actinomycete Streptomyces griseus were disrupted and the cell envelope was subjected to sucrose step-gradient centrifugation. The different fractions were analysed for NADH-oxidase activity and the formation of ion-permeable channels in lipid bilayers. Highest channel-forming activity and highest NADH-oxidase activity were found in different fractions. The cell wall fraction contained an ion-permeable channel with a single-channel conductance of 850 pS in 1 M KCl. The channel-forming protein, with an apparent molecular mass of 28 kDa, was purified to homogeneity using fast protein liquid chromatography after the extraction of whole cells with detergent. Single-channel experiments suggest that the cell wall channel is wide and water-filled. Titration experiments with streptomycin produced by S. griseus suggested that the cell wall channel binds this antibiotic with a half saturation constant of about 6 mM in 1 M KCl. The binding of streptomycin was found to be ionic strength dependent and the half saturation constant decreased to 60 microM at 0.1 M KCl. The results indicate that the 28 kDa protein represents the hydrophilic pathway through the cell wall of the Gram-positive bacterium S. griseus.  相似文献   

9.
Two channels were observed in extracts of whole Mycobacterium bovis BCG cells using organic solvents and detergents. The channels derived from organic solvent treatment had a single-channel conductance of about 4.0 nS in 1 M KCl in lipid bilayer membranes with properties similar to those of the channels discovered previously in Mycobacterium smegmatis and Mycobacterium chelonae. The channel was in its open configuration only at low transmembrane potentials. At higher voltages it switched to closed states that were almost impermeable for ions. Lipid bilayer experiments in the presence of detergent extracts of whole cells revealed another channel with a single-channel conductance of only 780 pS in 1 M KCl. Our results indicate that the mycolic acid layer of M. bovis BCG contains two channels, one is cation-selective and its permeability properties can be finely controlled by cell wall asymmetry or potentials. The other one is anion-selective, has a rather small single-channel conductance and is voltage-insensitive. The concentration of channel-forming proteins in the cell wall seems to be small, which is in agreement with the low cell wall permeability for hydrophilic solutes.  相似文献   

10.
Porin of Dictyostelium discoideum was extracted from mitochondria with Genapol X-80 and was purified by hydroxyapatite and CM-cellulose chromatography. The purified protein displayed a single band of 30 kDa in SDS-polyacrylamide gel electrophoresis. The formation of channels in artificial lipid bilayer membranes defined its function as a channel-forming component. Its average single-channel conductance was 3.9 nanosiemens in 1 M KCl, which suggested that the effective diameter of the channel is approximately 1.7 nm at small transmembrane potentials. The channel displayed a characteristic voltage dependence for potentials higher than 20 mV. It switched to substates of smaller conductance and a selectivity different to that of the open state. The closed state was stabilized at low ionic strength. The cDNA sequence of mitochondrial porin from D. discoideum was determined. It showed little sequence similarities to other known mitochondrial porins. The functional similarity, however, was striking. Localization of the porin in the mitochondrial outer membrane was confirmed by immunogold labeling of cryosections of fixed cells.  相似文献   

11.
A Schmid  R Benz    B Schink 《Journal of bacteriology》1991,173(16):4909-4913
Porins were purified from cells of the anaerobic gram-negative bacterium Pelobacter venetianus grown with 20-kDa polyethylene glycol. After treatment of the cell envelope fraction with sodium dodecyl sulfate-containing solutions, the murein contained only two major peptidoglycan-associated proteins of 14 and 23 kDa. Both proteins were released from the peptidoglycan by the detergent Triton X-100. Genapol X-80 released only the 23-kDa protein. This protein was purified by chromatography on a hydroxyapatite column. It did not form sodium dodecyl sulfate-resistant oligomers. Reconstituted in lipid bilayer membranes, the 23-kDa protein formed cation-selective channels with a single-channel conductance of 230 pS in 1 M KCl. The channel is not a general-diffusion pore, since its conductance depends only moderately on the salt concentration. The channel conducted ammonium much better than potassium or rubidium ions, suggesting that it is probably involved in ammonium uptake. The outer membrane of P. venetianus contains a further, non-murein-associated pore with an unknown molecular mass. It is also cationically selective and has a single-channel conductance of 1.6 nS in 1 M KCl, which suggests that its effective diameter is similar to that of porins from enteric bacteria.  相似文献   

12.
Corynebacterium jeikeium, a resident of human skin, is often associated with multidrug resistant nosocomial infections in immunodepressed patients. C. jeikeium K411 belongs to mycolic acid-containing actinomycetes, the mycolata and contains a channel-forming protein as judged from reconstitution experiments with artificial lipid bilayer experiments. The channel-forming protein was present in detergent treated cell walls and in extracts of whole cells using organic solvents. A gene coding for a 40 amino acid long polypeptide possibly responsible for the pore-forming activity was identified in the known genome of C. jeikeium by its similar chromosomal localization to known porH and porA genes of other Corynebacterium strains. The gene jk0268 was expressed in a porin deficient Corynebacterium glutamicum strain. For purification temporarily histidine-tailed or with a GST-tag at the N-terminus, the homogeneous protein caused channel-forming activity with an average conductance of 1.25 nS in 1M KCl identical to the channels formed by the detergent extracts. Zero-current membrane potential measurements of the voltage dependent channel implied selectivity for anions. This preference is according to single-channel analysis caused by some excess of cationic charges located in the channel lumen formed by oligomeric alpha-helical wheels. The channel has a suggested diameter of 1.4 nm as judged from the permeability of different sized hydrated anions using the Renkin correction factor. Surprisingly, the genome of C. jeikeium contained only one gene coding for a cell wall channel of the PorA/PorH type found in other Corynebacterium species. The possible evolutionary relationship between the heterooligomeric channels formed by certain Corynebacterium strains and the homooligomeric pore of C. jeikeium is discussed.  相似文献   

13.
Detergent extracts of whole cells of the Gram-positive bacterium Tsukamurella inchonensis ATCC 700082, which belongs to the mycolata, were studied for the presence of ion-permeable channels using lipid bilayer experiments. One channel with a conductance of about 4.5 nS in 1 M KCl was identified in the extracts. The channel-forming protein was purified to homogeneity by preparative SDS-PAGE. The protein responsible for channel-forming activity had an apparent molecular mass of about 33 kDa as judged by SDS-PAGE. Interestingly, the protein showed cross-reactivity with polyclonal antibodies raised against a polypeptide derived from MspA of Mycobacterium smegmatis similarly as the cell wall channel of Mycobacterium phlei. Primers derived from mspA were used to clone and sequence the gene of the cell wall channels of T. inchonensis (named tipA for T. inchonensis porin A) and M. phlei (named mppA for M. phlei porin A). Surprisingly, both genes, tipA and mppA, were found to be identical to mspA of M. smegmatis, indicating that the genomes of T. inchonensis, M. phlei and M. smegmatis contain the same genes for the major cell wall channel. RT-PCR revealed that tipA is transcribed in T. inchonensis and mppA in M. phlei. The results suggest that despite a certain distance between the three organisms, their genomes contain the same gene coding for the major cell wall channel, with a molecular mass of 22 kDa for the monomer.  相似文献   

14.
The cell wall of Corynebacterium glutamicum contains the cation-selective channel (porin) PorAC.glut and the anion-selective channel PorBC.glut for the passage of hydrophilic solutes. Lipid bilayer experiments with organic solvent extracts of whole C. glutamicum cells cultivated in minimal medium suggested that also another cation-selective channel-forming protein, named PorHC.glut, is present in C. glutamicum. The protein was purified to homogeneity by fast-protein liquid chromatography across a HiTrap-Q column. The pure protein had an apparent molecular mass of about 12 kDa on SDS-PAGE. Western blot analysis suggested that the cell wall channel is presumably formed by protein oligomers. The purified protein forms cation-selective channels with an average single-channel conductance of about 2.5 nS in 1 M KCl in the lipid bilayer assay. The PorHC.glut protein was partially sequenced, and based on the resulting amino acid sequence, the corresponding gene, designated as porHC.glut, was identified in the published genome sequence of C. glutamicum ATCC13032. PorHC.glut contains only the inducer methionine but no N-terminal extension, which suggests that the export and assembly of the protein follow a yet unknown pathway. PorHC.glut is coded in the bacterial chromosome by a gene that is localized in the vicinity of porAC.glut, within a putative operon of 13 genes. RT-PCR revealed that both porins are cotranscribed. They coexist according to immunological detection experiments in the cell wall of C. glutamicum together with PorBC.glut and PorCC.glut.  相似文献   

15.
A K(+)-channel protein of the sarcoplasmic reticulum (SR) was purified by assaying the channel activity in a planar lipid bilayer system. The light fraction of SR vesicles was solubilized in 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and fractionated by an anion-exchange chromatography and followed by gel filtration chromatography and affinity chromatography with concanavalin A. All fractions in each steps were mixed with asolectin solubilized in CHAPS and reconstituted into vesicles by dialysis. The channel activity of each fraction was assayed after the reconstituted vesicles had been fused into a planar lipid bilayer. The final fraction which showed the K(+)-channel activity contained only 100 kDa protein in a silver-stained gel after SDS-PAGE and an anti-Ca(2+)-ATPase antibody did not recognize the protein. The characteristics of the K(+)-channel were identical to those observed in native SR vesicles when using the same method. The channel showed a single-channel conductance of 120 pS in 0.1 M KCl and marked voltage dependence. The channel did not permeate Ca2+ and Cl- and was blocked by neomycin B.  相似文献   

16.
Protein P, an anion-specific channel-forming protein from the outer membrane of Pseudomonas aeruginosa was chemically modified by acetylation and syccinylation of its accessible amino groups. The chemically modified protein retained its ability to form oligomers on sodium dodecyl sulfate polyacrylamide gels, whereas only the acetylated protein formed channels in reconstitution experiments with lipid bilayers. Acetylated protein P demonstrated a substantially reduced mean single channel conductance (25 pS at 1 M KCl) compared to the native protein P channels (250 pS at 1 M KCl) when reconstituted into black lipid bilayer membranes. The homogeneous size distribution of single-channel conductances suggested that all of the protein P molecules had been acetylated. Zero-current potential measurements demonstrated that the acetylated protein P channel was only weakly selective for anions and allowed the permeation of cations, in contrast to the native protein P channels, which were more than 100-fold selective for anions over cations. The dependence of conductance on salt concentration was changed upon acetylation, in that acetylated protein P demonstrated a linear concentration-conductance relationship, whereas native protein P channels became saturated at high salt concentrations. These data strongly suggested that the basis of anion selectivity for native protein P channels is fixed amino groups. In agreement with this, we could demonstrate a 2.5-fold decrease in single-channel conductance between pH 7 and pH 9, between which pH values the epsilon-amino groups of amino acids would start to become deprotonated. Two alternative schemes for the topography of the protein P channel and localization of the fixed amino groups are presented and discussed.  相似文献   

17.
Protein P, an anion-specific channel-forming protein from the outer membrane of Pseudomonas aeruginosa was chemically modified by acetylation and syccinylation of its accessible amino groups. The chemically modified protein retained its ability to form oligomers on sodium dodecyl sulfate polyacrylamide gels, whereas only the acetylated protein formed channels in reconstitution experiments with lipid bilayers. Acetylated protein P demonstrated a substantially reduced mean single channel conductance (25 pS at 1 M KCl) compared to the native protein P channels (250 pS at 1 M KCl) when reconstituted into black lipid bilayer membranes. The homogeneous size distribution of single-channel conductances suggested that all of the protein P molecules had been acetylated. Zero-current potential measurements demonstrated that the acetylated protein P channel was only weakly selective for anions and allowed the permeation of cations, in contrast to the native protein P channels, which were more than 100-fold selective for anions over cations. The dependence of conductance on salt concentration was changed upon acetylation, in that acetylated protein P demonstrated a linear concentration-conductance relationship, whereas native protein P channels became saturated at high salt concentrations. These data strongly suggested that the basis of anion selectivity for native protein P channels is fixed amino groups. In agreement with this, we could demonstrate a 2.5-fold decrease in single-channel conductance between pH 7 and pH 9, between which pH values the ?-amino groups of amino acids would start to become deprotonated. Two alternative schemes for the topography of the protein P channel and localization of the fixed amino groups are presented and discussed.  相似文献   

18.
We have purified a major outer membrane protein from Aeromonas salmonicida. This 42-kilodalton protein shared several physical characteristics with enterobacterial porins in that it was noncovalently associated with the peptidoglycan, it was released from the peptidoglycan in the presence of 0.1 M NaCl and sodium dodecyl sulfate, and its mobility on sodium dodecyl sulfate-polyacrylamide gels was dependent on the solubilization temperature before electrophoresis. When added to the aqueous solution bathing a planar bilayer membrane it caused the conductance of the membrane to increase by several orders of magnitude. At lower protein concentrations, single channels with an average conductance of 1.6 nS in 1 M KCl were incorporated into the membrane in a stepwise fashion. Evidence that the protein formed a large, relatively nonselective, water-filled channel was obtained by performing single-channel experiments at different NaCl concentrations and in a variety of different salts. Current through the channel was a linear function of the applied voltage, and no evidence of voltage gating was observed. In addition, we obtained evidence for a 43-kilodalton channel-forming protein in the outer membrane of A. hydrophila with a similar single-channel conductance as the 42-kilodalton protein in 1 M NaCl.  相似文献   

19.
A cation-selective channel (porin), designated PorA, facilitates the passage of hydrophilic solutes across the cell wall of the mycolic acid-containing actinomycete Corynebacterium glutamicum. Biochemical and electrophysiological investigations of the cell wall of the mutant strain revealed the presence of an alternative channel-forming protein. This porin was purified to homogeneity and studied in lipid bilayer membranes. It forms small anion-selective channels with a diameter of about 1.4 nm and an average single-channel conductance of about 700 pS in 1 M KCl. The PorBCglut channel could be blocked by citrate in a dose-dependent manner. This result was in agreement with growth experiments in citrate as sole carbon source where growth in citrate was impaired as compared with growth in other carbon sources. The PorBCglut protein was partially sequenced and based on the resulting amino acid sequence of the corresponding gene, which was designated as porB, was identified as an unannotated 381 bp long open reading frame (ORF) in the published genome sequence of C. glutamicum ATCC13032. PorBCglut contains 126 amino acids with an N-terminal extension of 27 amino acids. One hundred and thirty-eight base pairs downstream of porB, we found an ORF that codes for a protein with about 30% identity to PorBCglut, which was named PorCCglut. The arrangement of porB and porC on the chromosome suggested that both genes belong to the same cluster. RT-PCR from overlapping regions between genes from wild-type C. glutamicum ATCC 13032 and its ATCC 13032DeltaporA mutant demonstrated that this is the case and that porB and porC are cotranscribed. The gene products PorBCglut and PorCCglut represent obviously other permeability pathways for the transport of hydrophilic compounds through the cell wall of C. glutamicum.  相似文献   

20.
We report that long-chain poly-L-glutamine forms cation-selective channels when incorporated into artificial planar lipid bilayer membranes. The channel was permeable to alkali cations and H(+) ions and virtually impermeable to anions; the selectivity sequence based on the single-channel conductance was H(+) > Cs(+) > K(+) > Na(+). The cation channel was characterized by long-lived open states (often lasting for several minutes to tens of minutes) interrupted by brief closings. The appearance of the channel depended critically on the length of polyglutamine chains; ion channels were observed with 40-residue stretches, whereas no significant conductance changes were detected with 29-residue tracts. The channel-forming threshold length of poly-L-glutamine was thus between 29 and 40 residues. A molecular mechanics calculation suggests a mu-helix (. Biophys. J. 69:1130-1141) as a candidate molecular structure of the channel. The channel-forming nature of long-chain poly-L-glutamine may provide a clue to the elucidation of the pathogenetic mechanism of the polyglutamine diseases, a group of inherited neurodegenerative disorders including Huntington's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号