首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The dependence of urokinase-type plasminogen activator (uPA) induction on endogenous basic fibroblast growth factor (bFGF) activity during endothelial cell migration was investigated utilizing a combination of wounded endothelial cell monolayers and substrate overlay techniques. Purified polyclonal rabbit immunoglobulin G (IgG) against bFGF blocked the appearance of uPA-dependent lytic activity normally observed at the edge of a wounded bovine aortic endothelial (BAE) cell monolayer. Additionally, the migration of cells into the denuded area was inhibited 30-50% by antibodies either to bFGF or to bovine uPA. Incubation of wounded monolayers with either purified bovine uPA or agents able to induce PA activity, such as phorbol myristate acetate (PMA), vanadate, or bFGF, resulted in enhanced migration of cells (28-50%). Anti-bovine uPA IgG blocked a significant fraction (25%) of BAE cell migration induced by exposure to exogenous bFGF. The role of uPA in migration of wounded BAE cells was not dependent on plasmin generation. Furthermore, the amino terminal fragment (ATF) of human recombinant (hr) uPA, which is enzymatically inactive, stimulated endothelial cell movement in the presence of anti-bFGF IgG. These results suggest that BAE cell migration from the edge of a wounded monolayer is dependent upon local increases of uPA mediated by endogenous bFGF. Moreover, the data support the conclusion that migration is stimulated via a signalling mechanism dependent upon occupancy of the uPA receptor but independent of uPA-mediated proteolysis.  相似文献   

2.
Heparan sulfate proteoglycans (HSPG) are ubiquitous constituents of mammalian cell surfaces and most extracellular matrices. A portion of the cell surface HSPG is anchored via a covalently linked glycosyl-phosphatidylinositol (Pl) residue, which can be released by treatment with a glycosyl-Pl specific phospholipase C (Pl-PLC). We report that exposure of bovine aortic endothelial and smooth muscle cells to Pl-PLC resulted in release of cell surface-associated, growth-promoting activity that was neutralized by antibasic fibroblast growth factor (bFGF) antibodies. Active bFGF was also released by treating the cells with bacterial heparitinase. Under the same conditions there was no release of mitogenic activity from cells (BHK-21, NIH/3T3, PF-HR9) that expressed little or no bFGF, as opposed to Pl-PLC-mediated release of active bFGF from the same cells transfected with the bFGF gene. The released bFGF competed with recombinant bFGF in a radioreceptor assay. Addition of Pl-PLC to sparsely seeded vascular endothelial cells resulted in a marked stimulation of cell proliferation, but there was no mitogenic effect of Pl-PLC on 3T3 fibroblasts. Studies with exogenously added 125I-bFGF revealed that about 6.5% and 20% of the cell surface-bound bFGF were released by treatment with Pl-PLC and heparitinase, respectively. Both enzymes also released sulfate-labeled heparan sulfate from metabolically labeled 3T3 fibroblasts. Pl-PLC failed to release 125I-bFGF from the subendothelial extracellular matrix (ECM), as compared to release of 60% of the ECM-bound bFGF by heparitinase. Our results indicate that 3-8% of the total cellular content of bFGF is associated with glycosyl-Pl anchored cell surface HSPG. This FGF may exert both autocrine and paracrine effects, provided that it is released by Pl-PLC and adequately presented to high affinity bFGF cell surface receptor sites.  相似文献   

3.
Recently, a novel class of angiostatic steroids which block angiogenesis in several systems has been described. Since the elaboration of proteases is believed to be an important component of angiogenesis, we tested whether these steroids blocked the fibrinolytic response of endothelial cells to the angiogenic protein, basic fibroblast growth factor [bFGF]). Cultured bovine aortic endothelial (BAE) cells were incubated with bFGF and/or medroxyprogesterone acetate (MPA), an angio-static steroid which has been shown to inhibit vascularization, collagenolysis, and tumor growth. When bFGF (3 ng/ml) was added to confluent monolayers of BAE cells, plasminogen activator (PA) activity in the medium was increased threefold. In contrast, MPA at 10?6 M, 10?7 M, 10?8 M, and 10?9 M decreased PA levels in the medium by 83%, 83%, 75%, and 39%, respectively. The stimulation of PA levels in BAE cells by bFGF (3 ng/ml) was abrogated by the presence of 10?6 M MPA. This decrease in PA activity was found to be mediated by a significant increase in plasminogen activator inhibitor type-1 (PAI-1) production. MPA, therefore, negated one of the important enzymatic activities associated with the angiogenic process. In contrast to the decreased levels of secreted PA in cultures exposed simultaneously to MPA and bFGF, cell-associated PA levels remained high, consistent with earlier observations indicating that PAI-1 does not inhibit cell-associated PA. Thus, angiostatic steroids may exert their inhibitory effects on angiogenesis by increasing the synthesis of PAI-1. This, in turn, inhibits PA activity and, therefore, plasmin generation, which is essential for the invasive aspect of angiogenesis. © 1993 Wiley-Liss, Inc.  相似文献   

4.
The formation of microvascular sprouts during angiogenesis requires that endothelial cells move through an extracellular matrix. Endothelial cells that migrate in vitro generate forces of traction that compress (i.e., contract) and reorganize vicinial extracellular matrix, a process that might be important for angiogenic invasion and morphogenesis in vivo. To study potential relationships between traction and angiogenesis, we have measured the contraction of fibrillar type I collagen gels by endothelial cells in vitro. We found that the capacity of bovine aortic endothelial (BAE) cells to remodel type I collagen was similar to that of human dermal fibroblasts—a cell type that generates high levels of traction. Contraction of collagen by BAE cells was stimulated by fetal bovine serum, human plasma-derived serum, bovine serum albumin, and the angiogenic factors phorbol myristate acetate and basic fibroblast growth factor (bFGF). In contrast, fibronectin and immunoglobulin from bovine serum, several nonserum proteins, and polyvinyl pyrrolidone (a nonproteinaceous substitute for albumin in artificial plasma) were not stimulatory. Contraction of collagen by BAE cells was diminished by an inhibitor of metalloproteinases (1, 10-phenanthroline) at concentrations that were not obviously cytotoxic. Zymography of proteins secreted by BAE cells that had contracted collagen gels revealed matrix metalloproteinase 2. Subconfluent BAE cells that were migratory and proliferating were more effective contractors of collagen than were quiescent, confluent cells of the same strain. Moreover, bovine capillary endothelial cells contracted collagen gels to a greater degree than was seen with BAE cells. Collectively, our observations indicate that traction-driven reorganization of fibrillar type I collagen by endothelial cells is sensitive to different mediators, some of which, e.g., bFGF, are known regulators of angiogenesis in vivo. © 1996 Wiley-Liss, Inc.  相似文献   

5.
BACKGROUND: We have previously shown that the membrane attack complex (MAC) of complement stimulates cell proliferation and that insertion of homologous MAC into the membranes of endothelial cells results in the release of potent mitogens, including basic fibroblast growth factor (bFGF). The mechanism of secretion of bFGF and other polypeptides devoid of signal peptides, such as interleukin 1 (IL-1) is still an open problem in cell biology. We have hypothesized that the homologous MAC pore itself could constitute a transient route for the diffusion of biologically active macromolecules in and out of the target cells. MATERIALS AND METHODS: Human red blood cell ghosts and artificial lipid vesicles were loaded with labeled growth factors, cytokines and IgG, and exposed to homologous MAC. The release of the 125I-macromolecules was followed as a function of time. The incorporation of labeled polypeptides and fluorescent dextran (MW: 10,000) was measured in MAC-impacted human red blood cells and human umbilical endothelial cells (HUVEC), respectively. RESULTS: Homologous MAC insertion into HUVEC resulted in the massive uptake of 10-kD dextran and induced the release of bFGF, in the absence of any measurable lysis. Red blood cell ghosts preloaded with bFGF, IL-1 beta, and the alpha-chain of interferon-gamma (IFN-gamma) released the polypeptides upon MAC insertion, but they did not release preloaded IgG. MAC-impacted ghosts took up radioactive IFN-gamma from the extracellular medium. Vesicles loaded with IL-I released the polypeptide when exposed to MAC. CONCLUSIONS: The homologous MAC pore in its nonlytic form allows for the export of cytosolic proteins devoid of signal peptides that are not secreted through the classical endoplasmic reticulum/Golgi exocytotic pathways. Our results suggest that the release, and perhaps the uptake, of biologically active macromolecules through the homologous MAC pore is a novel biological function of the complement system in mammals.  相似文献   

6.
Escherichia coli alpha-hemolysin (HlyA) is a protein exotoxin that binds and lyses eukaryotic cell and model membranes in the presence of calcium. Previous studies have been able to distinguish between reversible toxin binding to the membrane and irreversible insertion into the lipid matrix. Membrane lysis occurs as the combined effect of protein insertion plus a transient perturbation of the membrane bilayer structure. In the past, insertion and bilayer perturbation have not been experimentally dissected. This has now been achieved by studying HlyA penetration into lipid monolayers at the air-water interface, in which three-dimensional effects (of the kind required to break down the bilayer permeability barrier) cannot occur. The study of native HlyA, together with the nonlytic precursor pro-HlyA, and of different mutants demonstrates that although some nonlytic variants (e.g. pro-HlyA) exhibit very low levels of insertion, others (e.g. the nonlytic mutant HlyA H859N) insert even more strongly than the lytic wild type. These results show that insertion does not necessarily lead to membrane lysis, i.e. that insertion and lysis are not "coupled" phenomena. Millimolar levels of Ca(2+), which are essential for the lytic activity, cause an extra degree of insertion but only in the case of the lytic forms of HlyA.  相似文献   

7.
Tumor-infiltrating lymphocytes (TIL) are well known to be functionally impaired typified by the inability to lyse cognate tumor cells in vitro. We have investigated the basis for defective TIL lytic function in transplantable murine tumor models. CD8(+) TIL are nonlytic immediately on isolation even though they express surface activation markers, contain effector phase cytokine mRNAs, and contain perforin and granzyme B proteins which are packaged into lytic granules. Ag-specific lytic capability is rapidly recovered if purified TIL are briefly cultured in vitro and tumor lysis is perforin-, but not Fas ligand mediated. In response to TCR ligation of nonlytic TIL in vitro, proximal and distal signaling events are normal; calcium flux is rapid; mitogen-activated protein/extracellular signal-related kinase kinase, extracellular regulatory kinase 2, phosphoinositide-3 kinase, and protein kinase C are activated; and IL-2 and IFN-gamma is secreted. However, on conjugate formation between nonlytic TIL and cognate tumor cells in vitro, the microtubule-organizing center (MTOC) does not localize to the immunological synapse, thereby precluding exocytosis of preformed lytic granules and accounting for defective TIL lytic function. Recovery of TCR-mediated, activation-dependent MTOC mobilization and lytic activity requires proteasome function, implying the existence of an inhibitor of MTOC mobilization. Our findings show that the regulated release of TIL cytolytic granules is defective despite functional TCR-mediated signal transduction.  相似文献   

8.
Basic fibroblast growth factor (bFGF) binds to heparin-like molecules present in the extracellular matrix (ECM) of transformed fetal bovine aortic endothelial GM 7373 cells. Binding of bFGF to ECM can be competed by heparin or heparan sulfate, and ECM-bound bFGF can be released by treating the cells with heparinase or heparatinase. After binding to ECM, bFGF is slowly released into the medium in a biologically active form, as shown by its capacity to induce an increase of cell-associated plasminogen activator activity and cell proliferation. The increase is prevented upon removal of ECM-bound bFGF by a neutral 2 M NaCl wash. Soluble heparin and heparan sulfate reduce the amount of ECM-bound bFGF released into the medium, possibly competing with ECM polysaccharides for heparinase-like enzymes produced by endothelial cells, suggesting that these enzymes are involved in the mobilization of ECM-bound bFGF.  相似文献   

9.
Insulin-like growth factor binding proteins (IGFBPs) are found both associated with cells and in extracellular fluids. Cell-associated IGFBPs increase [125I]-IGF binding to cell monolayers, whereas extracellular (soluble, released) IGFBPs decrease binding. In the current study, we show that either IGFBP-3 or IGFBP-5 are the major forms of IGFBP released from monolayers of human GM10 fibroblasts, T98G glioblastoma cells and forskolin-treated bovine MDBK cells. IGFBPs represent the most abundant [125I]-IGF-I binding site on GM10 and T98G cell monolayers, but 4-17% of the total cell-associated IGFBPs are released from the cell monolayer at 8°C during their quantification. Most of the IGFBPs (> 70%) are released from MDBK cells. Quantitative estimates of [125I]-IGF binding to the cell monolayers are altered because of the ability of the released IGFBPs to reduce the amount of radiolabeled ligand that is available to bind to the cell surface. Lanthanum (La3+) depresses IGFBP release from all three cell types (> 80% for GM10 and T98G cells and > 65% for MDBK cells). The effect was cation specific, noted with La3+ or Zn2+ but not with either Mn2+, Sr2+ or Se3+. The effect was also IGFBP specific; La3+ markedly depressed the release of IGFBP-3 and IGFBP-5, but had less of an effect on IGFBP-2 and IGFBP-4. Concomitant with a decrease in IGFBP-3 and IGFBP-5 release, La3+ caused an increase in [125I]-IGF-I binding to cell-associated IGFBPs and type I IGF receptors. The released soluble IGFBPs have a three- to 20-fold greater affinity (Ka) for [125I]-IGF-I compared to cell-associated IGFBPs. La3+ did not alter the affinity constants of cell-associated IGFBPs. In summary, we have identified a means to prevent loss of IGFBPs from cell monolayers during binding assays. This procedure will be useful in accurately quantifying the levels of IGFBPs on cell monolayers and in determining the role of cell-associated IGFBPs in controlling IGF activity. Retention of cell-associated low affinity IGFBPs may be important in controlling the size of the pericellular IGF pool and in regulating IGF-I access to the type I IGF receptor. J. Cell. Biochem. 66:256-267. © 1997 Wiley-Liss, Inc.  相似文献   

10.
It has been proposed that a finely tuned protease-anti-protease equilibrium must be maintained during processes of cell migration in order to limit extracellular proteolysis to the close proximity of the cell surface, and thereby to prevent excessive extracellular matrix degradation. We have previously shown that urokinase-type plasminogen activator (u-PA) activity is induced in microvascular endothelial cells migrating from the edges of a wounded monolayer in vitro (Pepper et al., J. Cell Biol., 105:2535-2541, 1987). By Northern analysis, we now demonstrate that plasminogen activator inhibitor 1 (PAI-1) mRNA is increased in multiple-wounded monolayers of bovine microvascular (BME) or aortic (BAE) endothelial cells, with a maximal 7- and 9-fold increase 4 h after wounding, respectively. By in situ hybridization, we demonstrate that the increase in PAI-1 mRNA is localized to cells at the edge of a wounded BME or BAE cell monolayer. The increase in PAI-1 mRNA observed in BME cells is independent of cell division and is inhibited by antibodies to basic fibroblast growth factor (bFGF), suggesting that PAI-1 induction in migrating cells is mediated by the autocrine activity of bFGF. Taken together with our previous observations on the induction of u-PA, these results support the hypothesis that the proteolytic balance in the pericellular environment of migrating cells is regulated through the concomitant production of proteases and protease inhibitors.  相似文献   

11.
Influenza virus infection of tracheal gland cells in culture.   总被引:2,自引:0,他引:2       下载免费PDF全文
Influenza virus-induced tracheobronchitis causes limited epithelial deciliation but markedly decreased mucociliary transport. This suggests that virus-induced alterations in airway mucus play a role in decreased mucociliary transport. Airway submucosal glands are a primary source of mucus. Therefore, we examined virus-gland cell interactions by exposing primary cultures of isolated feline tracheal gland cells to influenza A/Scotland/840/74 H3N2 virus for 1 h at a multiplicity of infection of 0.1. Virus production and release into the culture medium first occurred between 8 and 12 h postinfection and eventually reached a steady state that continued for at least 8 days. Virus which was produced and released by infected cells infected other monolayers, resulting in viral production similar to that after infection with stock virus. Hemadsorption assays conducted 24 h after infection demonstrated that most of the cells in a monolayer became infected. The infection was nonlytic according to cell morphology, trypan blue dye exclusion, and release of lactate dehydrogenase. Because lysis of a cell subpopulation could have been masked by subsequent cell division, we compared the uptake of [3H]thymidine by infected and control monolayers. There was no increase in uptake by infected monolayers. These results demonstrate that feline tracheal gland cells in primary culture undergo productive and nonlytic infection with influenza A virus. This model provides a unique system for the study of virus-gland interactions isolated from the influence of other tissues.  相似文献   

12.
Cultured bovine capillary endothelial (BCE) cells synthesize heparan sulfate proteoglycans (HSPG), which are both secreted into the culture medium and deposited in the cell layer. The nonsoluble HSPGs can be isolated as two predominant species: a larger 800-kD HSPG, which is recovered from preparations of extracellular matrix, and a 250-kD HSPG, which is solubilized by nonionic detergent extraction of the cells. Both HSPG species bind bFGF. 125I-bFGF bound to BCE cell cultures is readily released by either heparinase or plasmin. When released by plasmin, the growth factor is recovered from the incubation medium as a complex with the partly degraded high molecular mass HSPG. Endogenous bFGF activity is released by a proteolytic treatment of cultured BCE cells. The bFGF-binding HSPGs are also released when cultures are incubated with the inactive proenzyme plasminogen. Under such experimental conditions, the release of the extracellular proteoglycans can be enhanced by treating the cells either with bFGF, which increases the plasminogen activating activity expressed by the cells, or decreased by treating the cells with transforming growth factor beta, which decreases the plasminogen activating activity of the cells. Specific immune antibodies raised against bovine urokinase also block the release of HSPG from BCE cell cultures. We propose that this plasminogen activator-mediated proteolysis provides a mechanism for the release of biologically active bFGF-HSPG complexes from the extracellular matrix and that bFGF release can be regulated by the balance between factors affecting the pericellular proteolytic activity.  相似文献   

13.
The kinetics of adsorption and growth of mycoplasmavirus MVL3 in Acholeplasma laidlawii 1305/68 host cells have been studied with one-step growth, premature lysis, and single-burst experiments. The virus was found to kill infected host cells. Virus release starts 90 min after infection and continues for about 10 to 15 h. Hence, virus production is unlike the classical lytic bacteriophages and instead resembles nonlytic cytocidal animal viruses. Structural details of the virus are described, and the molecular weight of the viral linear DNA has beenfound to be 26 x 10(6).  相似文献   

14.
Recent evidence indicates that basic fibroblast growth factor (bFGF), which lacks a conventional signal recognition sequence, is a component of the subendothelial matrix. However, the molecular mechanisms regulating its cellular release and subsequent matrix deposition remain equivocal. To examine the cellular and subcellular mechanisms regulating bFGF release and subendothelial sequestration, we generated polyclonal antibodies against a chemically cross-linked bFGF. We then used anti-bFGF IgG in conjunction with 3T3 cell [3H]thymidine incorporation assays, enzyme immunoassays and immunofluorescence to learn whether bFGF accumulation in the subendothelial matrix is dependent upon endothelial cell (EC)-cell contact, which coincides with growth arrest. In contrast to subconfluent cultures, which lacked any detectable extracellular matrix bFGF localization, bovine aortic and microvascular EC plated at confluent densities displayed a punctate extracellular staining pattern that was abolished when EC were pretreated with 10 micrograms/ml cycloheximide. Additionally, when EC were treated with either 1 mM beta-D xyloside, an inhibitor of proteoglycan assembly, or 100 micrograms/ml heparin, there was a 40% reduction in matrix-associated bFGF (quantified by image analysis of antibody stained cultures). 3T3 [3H]thymidine incorporation assays indicated that the beta-D xyloside-induced reduction of matrix-associated bFGF coincided with a significant increase in bFGF activity in the conditioned media. Neither sparsely-plated nor confluent EC cultures possessed specific bFGF localization of the nuclear compartment when cells were fixed using cold methanol; however, when EC were fixed in formaldehyde and lysed in isotonic buffers containing 0.1% Triton X-100 or absolute acetone, there was a marked decrease in anti-bFGF staining of the postconfluent extracellular matrix and a concomitant increase in nuclear fluorescence. Because bFGF-stimulated vascular cell growth has been implicated in controlling neointimal cell proliferation, we screened normal and atherosclerotic coronary blood vessels for bFGF, but we were unable to detect it either in lesioned or normal intima. In contrast, significant bFGF levels were observed in association with the EC and mesangial cells of the renal corpuscle, where heparan sulfate accumulates within the glomerular basement membrane. Our in vitro results suggest that bFGF accumulates within the proteoglycan-containing subendothelial matrix concomitant with the formation of cell-cell contacts. In situ, the composition of the microvascular matrix and the cellular phenotype may facilitate the selective accumulation of bFGF that we observed. This, in turn, may influence vascular morphogenesis and remodeling during angiogenesis.  相似文献   

15.
B H Long  C Y Huang  A O Pogo 《Cell》1979,18(4):1079-1090
Nuclear matrices from undifferentiated and differentiated Friend erythroleukemia cells have been obtained by a method which removes DNA in a physiological buffer. These matrices preserved the characteristic topographical distribution of condensed and diffuse "chromatin" regions, as do nuclei in situ or isolated nuclei. Histone H1 was released from the nuclear matrix of undifferentiated cells by 0.3 M KCl; inner core histones were released by 1 M KCl. Nuclear matrix from differentiated cells did not maintain H1, and histone cores were fully released in 0.7 M KCl. KCl removed the core histones as an octameric structure with no evidence of preferential release of any single histone. Electron microscopy of KCl-treated matrix revealed no condensed regions but rather a network of fibrils in the whole DNA-depleted nuclei. When nuclear matrices from both types of cell were exposed to conditions of very low ionic strength, inner core histones and condensed regions remained. These observations support the contention that inner core histones are bound to matrix through natural ionic bonds or saline-labile elements, and that these interactions are implicated in chromatin condensation. hnRNA remained undegraded and tenaciously associated to the matrix fibrils, and was released only by chemical means which, by breaking hydrophobic and hydrogen bonds, produced matrix lysis. Very few nonhistone proteins were released upon complete digestion of DNA from either type of nuclei. The remaining nonhistone proteins represent a large number of species of which the majority may be matrix components. The molecular architecture in both condensed and diffuse regions of interphase nuclei appears to be constructed of two distinct kinds of fibers; the thicker chromatin fibers are interwoven with the thinner matrix fibers. The latter are formed by a heteropolymer of many different proteins.  相似文献   

16.
Acidic fibroblast growth factor (aFGF) mRNA was detected in a rat mammary fibroblastic cell line, but not in rat mammary epithelial cell lines or myoepithelial-like cell lines. Basic FGF (bFGF) mRNA was detected in both the fibroblasts and the myoepithelial-like cells, but was absent from the epithelial cells. A series of cell lines representing stages in the differentiation pathway of epithelial cells to a myoepithelial-like morphology showed an increase in the amount of bFGF mRNA and activity present and the FGF from the myoepithelial-like rat mammary 29 cells was able to displace [125I]-bFGF specifically bound to rat mammary fibroblasts. FGF activity was also present in an extract of rat mammary gland. Analysis of cell extracts and conditioned medium indicated that FGF activity was cell-associated. The cell-associated bFGF was resistant to degradation by trypsin. Extraction of myoepithelial-like cells with Triton X-100 and 2 M NaCl showed that 50-65% of the cell-associated bFGF was in a detergent-resistant but 2 M NaCl-labile structure. Thus, the synthesis of bFGF is developmentally regulated in rat mammary cell lines, and at least 50% is present in the extracellular matrix.  相似文献   

17.
The death and lysis of microbial cells leads to the release of cytoplasmic contents, many of which are rapidly degraded by enzymes. However, some macromolecules survive intact and find new functions in the extracellular environment. There is now strong evidence that DNA released from cells during lysis, or sometimes by active secretion, becomes a key component of the macromolecular scaffold in many different biofilms. Enzymatic degradation of extracellular DNA can weaken the biofilm structure and release microbial cells from the surface. Many bacteria produce extracellular deoxyribonuclease (DNase) enzymes that are apparently tightly regulated to avoid excessive degradation of the biofilm matrix. Interfering with these control mechanisms, or adding exogenous DNases, could prove a potent strategy for controlling biofilm growth.  相似文献   

18.
When a confluent monolayer of bovine aortic endothelial (BAE) cells is wounded with a razor blade, endothelial cells (ECs) spontaneously move into the denuded area. If bovine pericytes or smooth muscle cells (SMCs) are plated into the denuded area at low density, they block the movement of the ECs. This effect is dependent upon the number of cells plated into the wound area and contact between ECs and the plated cells. Antibodies to transforming growth factor-beta 1 (TGF-beta 1) abrogate the inhibition of BAE cell movement by pericytes or SMCs. TGF-beta 1, if added to wounded BAE cell monolayers, also inhibits cell movement. When cultured separately, BAE cells, pericytes, and SMCs each produce an inactive TGF-beta 1-like molecule which is activated in BAE cell-pericyte or BAE cell-SMC co-cultures. The activation appears to be mediated by plasmin as the inhibitory effect on cell movement in co-cultures of BAE cells and pericytes is blocked by the inclusion of inhibitors of plasmin in the culture medium.  相似文献   

19.
To gain insight into the mechanisms of synthesis, storage, and release of basic fibroblast growth factor (bFGF), we studied the immunohistochemical localization of bFGF in bovine coronary artery, coronary sinus, and adrenal capillary endothelial cells grown in culture. Light and electron microscopic immunohistochemical studies were performed using the ABC immunoperoxidase method on p-formaldehyde-fixed cells. Five different anti-bFGF antibodies gave similar results in all cell types. In subconfluent cells, immunoreactivity was noted in the nuclear chromatin, nucleoli, cytosol, cytoplasmic vesicles (some of which appeared to fuse with the plasma membrane), and extracellular matrix. No reaction was found in endoplasmic reticulum or Golgi zones. Confluent cells demonstrated less immunoreactivity in the nuclei and cytosol but more in the extracellular matrix. Some cells of senescent morphology showed only cytoplasmic staining; however, no cells were found with only nuclear staining. Biochemical studies showed that three forms of bFGF (18, 24, and 26 kDa) were present in endothelial cells and varied with different culture conditions. Protection analysis indicated that bFGF mRNA is less abundant in postconfluent cells than in subconfluent cells. These data suggest that subconfluent cells synthesize bFGF and transport it into the nucleus and exocytotic vesicles, while confluent cells synthesize little bFGF but store it in extracellular matrix, cytoplasmic vesicles, and nuclei.  相似文献   

20.
The radius of diffusion of basic FGF (bFGF) in the presence and in the absence of the glycosaminoglycans heparin and heparan sulfate was measured. Iodinated 125I-bFGF diffuses further in agarose, fibrin, and on a monolayer of bovine aortic endothelial (BAE) cells in the presence of heparin than in its absence. Heparan sulfates affected the diffusion of 125I-bFGF in a manner similar to, though less pronounced than, heparin. When applied at the center of a monolayer of BAE cells, bFGF plus heparin stimulated morphological changes at a 10-fold greater radius than bFGF alone. These results suggest that bFGF-heparin and/or heparan sulfate complexes may be more effective than bFGF alone in stimulating cells located away from the bFGF source because the bFGF-glycosaminoglycan complex partitions into the soluble phase rather than binding to insoluble glycosaminoglycans in the extracellular matrix. Thus, the complex of bFGF and glycosaminoglycan may represent one of the active forms of bFGF in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号