首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the potential importance of gene duplication in D. melanogaster accessory gland protein (Acp) gene evolution we carried out a computational analysis comparing annotated D. melanogaster Acp genes to the entire D. melanogaster genome. We found that two known Acp genes are actually members of small multigene families. Polymorphism and divergence data from these duplicated genes suggest that in at least four cases, protein divergence between D. melanogaster and D. simulans is a result of directional selection. One putative Acp revealed by our computational analysis shows evidence of a recent selective sweep in a non-African population (but not in an African population). These data support the idea that selection on reproduction-related genes may drive divergence of populations within species, and strengthen the conclusion that Acps may often be under directional selection in Drosophila.  相似文献   

2.
Wagstaff BJ  Begun DJ 《Genetics》2007,177(2):1023-1030
The relationship between animal mating system variation and patterns of protein polymorphism and divergence is poorly understood. Drosophila provides an excellent system for addressing this issue, as there is abundant interspecific mating system variation. For example, compared to D. melanogaster subgroup species, repleta group species have higher remating rates, delayed sexual maturity, and several other interesting differences. We previously showed that accessory gland protein genes (Acp's) of Drosophila mojavensis and D. arizonae evolve more rapidly than Acp's in the D. melanogaster subgroup and that adaptive Acp protein evolution is likely more common in D. mojavensis/D. arizonae than in D. melanogaster/D. simulans. These findings are consistent with the idea that greater postcopulatory selection results in more adaptive evolution of seminal fluid proteins in the repleta group flies. Here we report another interesting evolutionary difference between the repleta group and the D. melanogaster subgroup Acp's. Acp gene duplications are present in D. melanogaster, but their high sequence divergence indicates that the fixation rate of duplicated Acp's has been low in this lineage. Here we report that D. mojavensis and D. arizonae genomes contain several very young duplicated Acp's and that these Acp's have experienced very rapid, adaptive protein divergence. We propose that rapid remating of female desert Drosophila generates selection for continuous diversification of the male Acp complement to improve male fertilization potential. Thus, mating system variation may be associated with adaptive protein divergence as well as with duplication of Acp's in Drosophila.  相似文献   

3.
In Drosophila melanogaster and Drosophila simulans, positive Darwinian selection drives high rates of evolution of male reproductive genes, and accessory gland proteins (Acps) in particular. Here, we tested whether 13 X-linked male-specific genes, 4 Acps and 9 non-Acps, are under selective forces in the Drosophila pseudoobscura species group, much as those in the D. melanogaster group. We observed a statistically significant correlation in relative rates of nonsynonymous evolution between the two species groups tested. One Acp examined had a higher rate of nonsynonymous substitution than predicted by a neutral model in both species groups, suggesting its divergence was driven by positive Darwinian selection. To further test for the signature of selection, we examined polymorphism of three Acps within D. pseudoobscura. From this test, no Acp individually bore the signature of positive selection, but the 3 Acps together possessed an excess of nonsynonymous differences between species, relative to polymorphism within species. We conclude that faster evolution of Acps in the D. pseudoobscura group appears to be driven by positive selection, as previously suggested in the D. melanogaster group.  相似文献   

4.
Llopart A  Aguadé M 《Genetics》1999,152(1):269-280
The region encompassing the RpII215 gene that encodes the largest component of the RNA polymerase II complex (1889 amino acids) has been sequenced in Drosophila subobscura, D. madeirensis, D. guanche, and D. pseudoobscura. Nonsynonymous divergence estimates (Ka) indicate that this gene has a very low rate of amino acid replacements. Given its low Ka and constitutive expression, synonymous substitution rates are, however, unexpectedly high. Sequence comparisons have allowed the molecular clock hypothesis to be tested. D. guanche is an insular species and it is therefore expected to have a reduced effective size relative to D. subobscura. The significantly higher rate of synonymous substitutions detected in the D. guanche lineage could be explained if synonymous mutations behave as nearly neutral. Significant departure from the molecular clock hypothesis for synonymous and nonsynonymous substitutions was detected when comparing the D. subobscura, D. pseudoobscura, and D. melanogaster lineages. Codon bias and synonymous divergence between D. subobscura and D. melanogaster were negatively correlated across the RpII215 coding region, which indicates that selection coefficients for synonymous mutations vary across the gene. The C-terminal domain (CTD) of the RpII215 protein is structurally and functionally differentiated from the rest of the protein. Synonymous substitution rates were significantly different in both regions, which strongly indicates that synonymous mutations in the CTD and in the non-CTD regions are under detectably different selection coefficients.  相似文献   

5.
C. Segarra  G. Ribo    M. Aguade 《Genetics》1996,144(1):139-146
Twenty-two markers located on Muller's elements D or E have been mapped by in situ hybridization in six species of the obscura group of Drosophila and in D. melanogaster. The obscura species can be grouped into a Palearctic cluster (D. subobscura, D. madeirensis and D. guanche) and a Nearctic one (D. pseudoobscura, D. persimilis and D. miranda). Eleven of the probes contain known genes: E74, Acp70A, Est5, hsp28/23, hsp83, emc, hsp70, Xdh, Acph-1, Cec and rp49. The remaining probes are recombinant phages isolated from a D. subobscura genomic library. All these markers hybridize to the putative homologous chromosome or chromosomal arm of elements D and E. Thus, these elements have conserved their genic content during species divergence. Chromosomal homologies proposed previously for each element among the species of the same cluster have been compared with the present results. The distribution of markers within each element has changed considerably as inferred from pairwise comparisons of obscura species included in the two different clusters. Only chromosomal segments defined by closely linked markers have been conserved: one such segment has been detected in element D and three in element E between D. subobscura and D. pseudoobscura.  相似文献   

6.
M Aguadé 《Genetics》1999,152(2):543-551
Nucleotide sequence variation at the Acp29AB gene region has been surveyed in Drosophila melanogaster from Spain (12 lines), Ivory Coast (14 lines), and Malawi (13 lines) and in one line of D. simulans. The approximately 1.7-kb region studied encompasses the Acp29AB gene that codes for a male accessory gland protein and its flanking regions. Seventy-seven nucleotide and 8 length polymorphisms were detected. Nonsynonymous polymorphism was an order of magnitude lower than synonymous polymorphism, but still high relative to other non-sex-related genes. In D. melanogaster variation at this region revealed no major genetic differentiation between East and West African populations, while differentiation was highly significant between the European and the two African populations. Comparison of polymorphism and divergence at synonymous and nonsynonymous sites showed an excess of fixed nonsynonymous changes, which indicates that the evolution of the Acp29AB protein has been driven by directional selection at least after the split of the D. melanogaster and D. simulans lineages. The pattern of variation in extant populations of D. melanogaster favors a scenario where the fixation of advantageous replacement substitutions occurred in the early stages of speciation and balancing selection is maintaining variation in this species.  相似文献   

7.
In contrast to Drosophila melanogaster and Drosophila simulans, the yellow (y) gene region of Drosophila subobscura is not located in a region with a strong reduction in recombination. In addition, this gene maps very close to the breakpoints of different inversions that segregate as polymorphic in natural populations of D. subobscura. Therefore, levels of variation at the y gene region in this species relative to those found in D. melanogaster and D. simulans may be affected not only by the change in the recombinational environment, but also by the presence of inversion polymorphism. To further investigate these aspects, an approximately 5.4-kb region of the A (=X) chromosome including the y gene was sequenced in 25 lines of D. subobscura and in the closely related species Drosophila madeirensis and Drosophila guanche. The D. subobscura lines studied differed in their A-chromosomal arrangements, A(st), A(2), and A(1). Unlike in D. melanogaster and D. simulans, levels of variation at the y gene region of D. subobscura are not reduced relative to those found at other genomic regions in the same species (rp49, Acp70A, and Acph-1). This result supports the effect of the change in the recombinational environment of a particular gene on the level of neutral variation. In addition, nucleotide variation is affected by chromosomal polymorphism. A strong genetic differentiation is detected between the A(1) arrangement and either A(st) or A(2), but not between A(st) and A(2). This result is consistent with the location of the y gene relative to the breakpoints of inversions A(1) and A(2). In addition, the pattern of nucleotide polymorphism in A(st)+A(2) and A(1) seems to point out that variation at the y gene region within these chromosomal classes is in the phase transient to equilibrium. The estimated ages of these arrangements assuming a star genealogy indicate that their origin cannot predate the D. madeirensis split. Therefore, the present results are consistent with a chromosomal phylogeny where Am(1), which is an arrangement present in D. madeirensis but absent in current populations of D. subobscura, would be the ancestral arrangement.  相似文献   

8.
Drosophila melanogaster, unlike mammals, has seven insulin-like peptides (DILPS). In Drosophila, all seven genes (dilp1-7) are single copy in the 12 species studied, except for D. grimshawi with two tandem copies of dilp2. Our comparative analysis revealed that genes dilp1-dilp7 exhibit differential functional constraint, which is indicative of some functional divergence. Species of the subgenera Sophophora and Drosophila differ in some traits likely affected by the insulin-signaling pathway, such as adult body size. It is in the branch connecting the two subgenera that we found the footprint left by positive selection driving nonsynonymous changes at some dilp1 codons to fixation. Finally, the similar rate at which the two dilp2 copies of D. grimshawi have evolved since their duplication and the presence of a putative regulatory region highly conserved between the two paralogs would suggest that both copies were preserved either because of subfunctionalization or dose dependency rather than by the neofunctionalization of one of the two copies.  相似文献   

9.
Torgerson DG  Singh RS 《Genetics》2004,168(3):1421-1432
Gene duplication is an important mechanism for acquiring new genes and creating genetic novelty in organisms. Evidence suggests that duplicated genes are retained at a much higher rate than originally thought and that functional divergence of gene copies is a major factor promoting their retention in the genome. We find that two Drosophila testes-specific alpha4 proteasome subunit genes (alpha4-t1 and alpha4-t2) have a higher polymorphism within species and are significantly more diverged between species than the somatic alpha4 gene. Our data suggest that following gene duplication, the alpha4-t1 gene experienced relaxed selective constraints, whereas the alpha4-t2 gene experienced positive selection acting on several codons. We report significant heterogeneity in evolutionary rates among all three paralogs at homologous codons, indicating that functional divergence has coincided with genic divergence. Reproductive subfunctionalization may allow for a more rapid evolution of reproductive traits and a greater specialization of testes function. Our data add to the increasing evidence that duplicated genes experience lower selective constraints and in some cases positive selection following duplication. Newly duplicated genes that are freer from selective constraints may provide a mechanism for developing new interactions and a pathway for the evolution of new genes.  相似文献   

10.
Using the genomic sequences of Drosophila melanogaster subgroup, the pattern of gene duplications was investigated with special attention to interlocus gene conversion. Our fine-scale analysis with careful visual inspections enabled accurate identification of a number of duplicated blocks (genomic regions). The orthologous parts of those duplicated blocks were also identified in the D. simulans and D. sechellia genomes, by which we were able to clearly classify the duplicated blocks into post- and pre-speciation blocks. We found 31 post-speciation duplicated genes, from which the rate of gene duplication (from one copy to two copies) is estimated to be 1.0×10−9 per single-copy gene per year. The role of interlocus gene conversion was observed in several respects in our data: (1) synonymous divergence between a duplicated pair is overall very low. Consequently, the gene duplication rate would be seriously overestimated by counting duplicated genes with low divergence; (2) the sizes of young duplicated blocks are generally large. We postulate that the degeneration of gene conversion around the edges could explain the shrinkage of “identifiable” duplicated regions; and (3) elevated paralogous divergence is observed around the edges in many duplicated blocks, supporting our gene conversion–degeneration model. Our analysis demonstrated that gene conversion between duplicated regions is a common and genome-wide phenomenon in the Drosophila genomes, and that its role should be especially significant in the early stages of duplicated genes. Based on a population genetic prediction, we applied a new genome-scan method to test for signatures of selection for neofunctionalization and found a strong signature in a pair of transporter genes.  相似文献   

11.
12.
Kern AD  Jones CD  Begun DJ 《Genetics》2004,167(2):725-735
Accessory gland proteins are a major component of Drosophila seminal fluid. These proteins have a variety of functions and may be subject to sexual selection and/or antagonistic evolution between the sexes. Most population genetic data from these proteins are from D. melanogaster and D. simulans. Here, we extend the population genetic analysis of Acp genes to the other simulans complex species, D. mauritiana and D. sechellia. We sequenced population samples of seven Acp's from D. mauritiana, D. sechellia, and D. simulans. We investigated the population genetics of these genes on individual simulans complex lineages and compared Acp polymorphism and divergence to polymorphism and divergence from a set of non-Acp loci in the same species. Polymorphism and divergence data from the simulans complex revealed little evidence for adaptive protein evolution at individual loci. However, we observed a dramatically inflated index of dispersion for amino acid substitutions in the simulans complex at Acp genes, but not at non-Acp genes. This pattern of episodic bursts of protein evolution in Acp's provides the strongest evidence to date that the population genetic mechanisms driving Acp divergence are different from the mechanisms driving evolution at most Drosophila genes.  相似文献   

13.
M Aguadé 《Genetics》1998,150(3):1079-1089
The Acp26Aa and Acp26Ab genes that code for male accessory gland proteins are tandemly arranged in the species of the Drosophila melanogaster complex. An approximately 1.6-kb region encompassing both genes has been sequenced in 10, 24, and 18 lines from Spain, Ivory Coast, and Malawi, respectively; the previously studied 10 lines from North Carolina have also been included in the analyses. A total of 110 nucleotide and 4 length polymorphisms were detected. Silent variation for the whole Acp26A region was slightly higher in African than in non-African populations, while for both genes nonsynonymous variation was similar in all populations studied. Based on Fst estimates no major genetic differentiation was detected between East and West Africa, while in general non-African populations were strongly differentiated from both African populations. Comparison of polymorphism and divergence at synonymous and nonsynonymous sites revealed that directional selection acting on amino acid replacement changes has driven the evolution of the Acp26Aa protein in the last 2.5 myr.  相似文献   

14.
15.
16.
Drosophila seminal proteins have an unusually high rate of molecular sequence evolution, suggesting either a high rate of neutral substitution or rapid adaptive evolution. To further quantify patterns of polymorphism and divergence in genes encoding seminal proteins, also called accessory gland proteins (Acp's), we conducted a sequencing survey of 10 Acp genes in samples of Drosophila melanogaster and D. simulans (Acp29AB, Acp32CD, Acp33A, Acp36DE, Acp53Ea, Acp62F, Acp63F, Acp76A, Acp95EF, and Acp98AB). Mean heterozygosity at replacement sites in D. simulans was 0.0074 for Acp genes and 0.0013 for a set of 19 non-Acp genes, and mean melanogaster-simulans divergence at replacement sites was 0.0497 for Acp genes and 0.0107 at non-Acp genes. The elevated divergence of Acp genes is thus accompanied by elevated within-species polymorphism. In addition to the already-reported departures of Acp26A, Acp29AB, and Acp70A from neutrality, our data reject neutrality at Acp29AB and Acp36DE in the direction of excess replacements in interspecific comparisons.  相似文献   

17.
A photographic map of salivary gland polytene chromosomes of Drosophila madeirensis has been constructed showing homologies and differences with respect to the standard gene arrangement of D. subobscura. Only two paracentric inversions in the X chromosome and some slight minor dissimilarities of one or two bands in the autosomes differentiate the chromosomes of these species.  相似文献   

18.
The insertion site numbers of the retrotransposable elements (TE) 412, gypsy and bilbo were determined in individuals of five distinct natural populations of the endemic species Drosophila madeirensis from the island of Madeira. The TE distributions were compared to those of the paleartic, widespread and phylogenetically closely related species, D. subobscura. In situ hybridization and Southern blots showed that in D. madeirensis the number of insertion sites ranged between 10 and 15, three and six, and 35 and 42 for elements 412, gypsy and bilbo, respectively. The corresponding values for D. subobscura were similar. Two of these elements, 412 and gypsy, had very few insertions in the heterochromatin, unlike bilbo, which displayed a high heterochromatic insertion number. The Southern band polymorphism was very high, leading to within-population variation of 97.2%, whatever the population and the TE concerned. Using the polymorphic TE insertion sites as markers to analyse population structure by AMOVA, adapted for RAPD (Randomly Amplified Polymorphic DNA) data, we found small but significant genetic differences between the populations on Madeira. This slight differentiation, coupled with similar copy numbers for each TE between populations, suggests that the D. madeirensis species consists of a single, only slightly subdivided population. These data also show that insular populations and endemic species of Drosophila can have as many copies of TEs as more widespread species.  相似文献   

19.
The accessory gland proteins (Acps) of Drosophila have become a model for the study of reproductive protein evolution. A major step in the study of Acps is to identify biological causes and consequences of the observed patterns of molecular evolution by comparing species groups with different biology. Here we characterize the Acp complement of Drosophila mayaguana, a repleta group representative. Species of this group show important differences in ecology and reproduction as compared to other Drosophila. Our results show that the extremely high rates of Acp evolution previously found are likely to be ubiquitous among species of the repleta group. These evolutionary rates are considerably higher than the ones observed in other Drosophila groups' Acps. This disparity, however, is not accompanied by major differences in the estimated number of Acps or in the functional categories represented as previously suggested. Among the genes expressed in accessory glands of D. mayaguana almost half are likely products of recent duplications. This allowed us to test predictions of the neofunctionalization model for gene duplication and paralog evolution in a more or less constrained timescale. We found that positive selection is a strong force in the early divergence of these gene pairs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号