首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The conformational dynamics of Humicola lanuginosa lipases (HLL) and its three mutants were investigated by steady state and time-resolved fluorescence spectroscopy in two different media, aqueous buffer and the substrate triacetin. The fluorescence of the four Trps of the wild-type HLL (wt) reports on the global changes of the whole lipase molecule. In order to monitor conformational changes specifically in the alpha-helical surface loop, the so-called 'lid' of HLL comprised of residues 86-93, the single Trp mutant W89m (W117F, W221H, W260H) was employed. Mutants W89L and W89mN33Q (W117F, W221H, W260H, N33Q) were used to survey the impact of Trp89 and mannose residues, respectively. Based on the data obtained, the following conclusions can be drawn. (i) HLL adapts the 'open' conformation in triacetin, with the alpha-helical surface loop moving so as to expose the active site. (ii) Trp89 contained in the lid plays an unprecedently important role in the structural stability of HLL. (iii) In triacetin, but not in the buffer, the motion of the Trp89 side chain becomes distinguishable from the motion of the lid. (iv) The carbohydrate moiety at Asn33 has only minor effects on the dynamics of Trp89 in the lid as judged from the fluorescence characteristics of the latter residue.  相似文献   

2.
The bacterial thermoalkalophilic lipases optimally hydrolyze saturated fatty acids at elevated temperatures. They also have significant sequence homology with staphylococcal lipases, and both the thermoalkalophilic and staphylococcal lipases are grouped as the lipase family I.5. We report here the first crystal structure of the lipase family I.5, the structure of a thermoalkalophilic lipase from Bacillus stearothermophilus L1 (L1 lipase) determined at 2.0-A resolution. The structure is in a closed conformation, and the active site is buried under a long lid helix. Unexpectedly, the structure exhibits a zinc-binding site in an extra domain that accounts for the larger molecular size of the family I.5 enzymes in comparison to other microbial lipases. The zinc-coordinated extra domain makes tight interactions with the loop extended from the C terminus of the lid helix, suggesting that the activation of the family I.5 lipases may be regulated by the strength of the interactions. The unusually long lid helix makes strong hydrophobic interactions with its neighbors. The structural information together with previous biochemical observations indicate that the temperature-mediated lid opening is triggered by the thermal dissociation of the hydrophobic interactions.  相似文献   

3.
Access to the active site of human pancreatic lipase (HPL) is controlled by a surface loop (the lid) that undergoes a conformational change in the presence of amphiphiles and lipid substrate. The question of how and when the lid opens still remains to be elucidated, however. A paramagnetic probe was covalently bound to the lid via the D249C mutation, and electron paramagnetic resonance (EPR) spectroscopy was used to monitor the conformational change in solution. Two EPR spectral components, corresponding to distinct mobilities of the probe, were attributed to the closed and open conformations of the HPL lid, based on experiments performed with the E600 inhibitor. The open conformation of the lid was observed in solution at supramicellar bile salt concentrations. Colipase alone did not induce lid opening but increased the relative proportions of the open conformation in the presence of bile salts. The opening of the lid was found to be a reversible process. Using various colipase to lipase molar ratios, a correlation between the proportion of the open conformation and the catalytic activity of HPL was observed.  相似文献   

4.
This study was done to better understand how lipases are activated at an interface. We investigated the conformational and solvation changes occurring during the adsorption of Humicola lanuginosa lipase (HLL) onto a hydrophobic surface using Fourier transform infrared-attenuated total reflection spectroscopy. The hydrophobic surfaces were obtained by coating silicon attenuated total reflection crystal with octadecyltrichlorosilane. Analysis of vibrational spectra was used to compare the conformation of HLL adsorbed at the aqueous-solid interface with its conformation in solution. X-ray crystallography has shown that HLL exists in two conformations, the closed and open forms. The conformational changes in HLL caused by adsorption onto the surface were compared with those occurring in three reference proteins, bovine serum albumin, lysozyme, and alpha-chymotrypsin. Adsorbed protein layers were prepared using proteins solutions of 0.005 to 0.5 mg/mL. The adsorptions of bovine serum albumin, lysozyme, and alpha-chymotrypsin to the hydrophobic support were accompanied by large unfoldings of ordered structures. In contrast, HLL underwent no secondary structure changes at first stage of adsorption, but there was a slight folding of beta-structures as the lipase monolayer became complete. Solvation studies using deuterated buffer showed an unusual hydrogen/deuterium exchange of the peptide CONH groups of the adsorbed HLL molecules. This exchange is consistent with the lipase being in the native open conformation at the water/hydrophobic interface.  相似文献   

5.
In most lipases, a mobile lid covers the substrate binding site. In this closed structure, the lipase is assumed to be inactive. Upon activation of the lipase by contact with a hydrophobic solvent or at a hydrophobic interface, the lid opens. In its open structure, the substrate binding site is accessible and the lipase is active. The molecular mechanism of this interfacial activation was studied for three lipases (from Candida rugosa, Rhizomucor miehei, and Thermomyces lanuginosa) by multiple molecular dynamics simulations for 25 ns without applying restraints or external forces. As initial structures of the simulations, the closed and open structures of the lipases were used. Both the closed and the open structure were simulated in water and in an organic solvent, toluene. In simulations of the closed lipases in water, no conformational transition was observed. However, in three independent simulations of the closed lipases in toluene the lid gradually opened. Thus, pathways of the conformational transitions were investigated and possible kinetic bottlenecks were suggested. The open structures in toluene were stable, but in water the lid of all three lipases moved towards the closed structure and partially unfolded. Thus, in all three lipases opening and closing was driven by the solvent and independent of a bound substrate molecule.  相似文献   

6.
Most lipases contain a lid domain to shield the hydrophobic binding site from the water environment. The lid, mostly in helical form, can undergo a conformational change to expose the active cleft during the interfacial activation. Here we report the crystal structures of Malassezia globosa LIP1 (SMG1) at 1.45 and 2.60 ? resolution in two crystal forms. The structures present SMG1 in its closed form, with a novel lid in loop conformation. SMG1 is one of the few members in the fungal lipase family that has been found to be strictly specific for mono- and diacylglycerol. To date, the mechanism for this substrate specificity remains largely unknown. To investigate the substrate binding properties, we built a model of SMG1 in open conformation. Based on this model, we found that the two bulky hydrophobic residues adjacent to the catalytic site and the N-terminal hinge region of the lid both may act as steric hindrances for triacylglycerols binding. These unique structural features of SMG1 will provide a better understanding on the substrate specificity of mono- and diacylglycerol lipases and a platform for further functional study of this enzyme.  相似文献   

7.
A family I.3 lipase from Pseudomonas sp. MIS38 (PML) is characterized by the presence of two lids (lid1 and lid2) that greatly change conformation upon substrate binding. While lid1 represents the commonly known lid in lipases, lid2 is unique to PML and other family I.3 lipases. To clarify the role of lid2 in PML, a lid2 deletion mutant (ΔL2-PML) was constructed by deleting residues 35-64 of PML. ΔL2-PML requires calcium ions for both lipase and esterase activities as does PML, suggesting that it exhibits activity only when lid1 is fully open and anchored by the catalytically essential calcium ion, as does PML. However, when the enzymatic activity was determined using triacetin, the activity of PML exponentially increased as the substrate concentration reached and increased beyond the critical micellar concentration, while that of ΔL2-PML did not. These results indicate that PML undergoes interfacial activation, while ΔL2-PML does not. The activities of ΔL2-PML for long-chain triglycerides significantly decreased while its activity for fatty acid ethyl esters increased, compared with those of PML. Comparison of the tertiary models of ΔL2-PML in a closed and open conformation, which are optimized by molecular dynamics simulation, with the crystal structures of PML suggests that the hydrophobic surface area provided by lid1 and lid2 in an open conformation is considerably decreased by the deletion of lid2. We propose that the hydrophobic surface area provided by these lids is necessary to hold the micellar substrates firmly to the active site and therefore lid2 is required for interfacial activation of PML. DATABASE: Triacylglycerol lipase (EC 3.1.1.3).  相似文献   

8.
The conformation of a surface loop, the lid, controls activity of pancreatic triglyceride lipase (PTL) by moving from a position that sterically hinders substrate access to the active site into a new conformation that opens and configures the active site. Movement of the lid is accompanied by a large change in steady state tryptophan fluorescence. Although a change in the microenvironment of Trp-253, a lid residue, could account for the increased fluorescence, the mechanism and tryptophan residues have not been identified. To identify the tryptophan residues responsible for the increased fluorescence and to gain insight into the mechanism of lid opening and the structure of PTL in aqueous solution, we examined the effects of mutating individual tryptophan residues to tyrosine, alanine, or phenylalanine on lipase activity and steady state fluorescence. Substitution of tryptophans 86, 107, 253, and 403 reduced activity against tributyrin with the largest effects caused by substituting Trp-86 and Trp-107. Trp-107 and Trp-253 fluorescence accounts for the increased fluorescence emissions of PTL that is stimulated by tetrahydrolipstatin and sodium taurodeoxycholate. The largest contribution is from Trp-107. Contrary to the prediction from the crystal structure of PTL, Trp-107 is likely exposed to solvent. Both tetrahydrolipstatin and sodium taurodeoxycholate are required to produce the increased fluorescence in PTL. Alone, neither is sufficient. Colipase does not significantly influence the conformational changes leading to increased emission fluorescence. Thus, Trp-107 and Trp-253 contribute to the change in steady state fluorescence that is triggered by mixed micelles of inhibitor and bile salt. Furthermore, the results suggest that the conformation of PTL in solution differs significantly from the conformation in crystals.Lipases belong to a large gene family of proteins characterized by a common protein structure (1, 2). Included in this family are pancreatic triglyceride lipase (PTL,2 triacylglycerol acylhydrolase, EC 3.1.1.3) and its close homologues pancreatic triglyceride lipase related proteins 1 and 2 (3). Not only do these pancreatic lipases have highly conserved primary structures, their x-ray crystal structures are essentially identical (46). Each contains two domains, a globular N-terminal domain consisting of an α/β hydrolase fold and a C-terminal domain consisting of a β-sandwich structure. A striking feature of these lipases and many others is the presence of a surface loop termed the lid domain. Together with the β5 loop and β9 loops of the N-terminal domain, the lid domain sterically hinders access of substrate to the active site. In this conformation, PTL cannot hydrolyze substrate, and the existence of another conformation was proposed (6).Subsequently, a second, open conformation of PTL was identified in studies of the crystal structure of the PTL-colipase complex (7, 8). In these studies, the investigators obtained crystals of the complex in the presence and absence of detergent and phospholipid mixed micelles. Without micelles, the lid domain remained in the same closed position as observed in the PTL structure even though colipase clearly bound to the C-terminal domain (8). With micelles, the lid domain and the β5 loop adopted new conformations (7). A large hinge movement of the lid moved the domain away from the active site to form new interactions with colipase. The lid movement opened and configured the active site to generate a conformation compatible with catalysis. Additionally, the movement exposed a large hydrophobic surface on the PTL-colipase complex, a surface that likely contributes to the anchoring of the complex on the substrate interface.Although x-ray crystallography studies clearly demonstrated two conformations of PTL and other lipases, these only provide a static picture of what may be the beginning and end of the process. The mechanism that triggers lid opening and the presence of intermediate conformations remains speculative. Initially, many assumed that a lipid-water interface triggered the conformational change (9). However, a number of studies using inhibitors, small angle neutron scattering, neutron diffraction, and monoclonal antibodies suggest that the lid can open in solution (1014). In these studies, it was variously suggested that bile salt micelles and colipase or bile salt micelles alone were sufficient to trigger lid opening. The presence of a lipid substrate was not required.None of these studies addressed the relative contribution of bile salts and colipase to the lid opening. A recent paper described the use of electron paramagnetic resonance spectroscopy combined with site-directed spin labeling to monitor conformational changes in the PTL lid and to determine the effect of bile salts and colipase on lid opening (15). A cysteine was substituted for Asp-250 in the lid domain, and a paramagnetic probe was linked at that site. Using this method, the authors observed a mixture of closed and open conformations of the lid in the presence of bile salt micelles alone. Colipase by itself did not induce lid opening, but in the presence of bile salt micelles, colipase increased the relative concentration of PTL in the open conformation. Although the spin labeling did not have dramatic effects on the activity of the labeled PTL, it may not be benign. The presence of the probe may alter the kinetics of lid opening and may explain why a portion of PTL always stayed in the closed position.Another spectral method to follow conformation changes in proteins is fluorescence spectroscopy of native tryptophan. After systematically mutating the three tryptophans to alanine, investigators measured the binding of Thermomyces lanuginosus lipase and the mutants to mixed micelles of cis-parinaric acid and bile salt by fluorescence quenching and fluorescence resonance energy transfer (16). The measured values correlated with lid opening and depended on the presence of the single tryptophan in the lid. PTL shows a large increase in tryptophan fluorescence when incubated with a lipase inhibitor, tetrahydrolipstatin (THL), in the presence of bile salts (11). It was suggested, but not demonstrated, that the fluorescence change reflected movement of the lid domain. Because PTL contains seven tryptophan residues including one in the lid, Trp-253, the interpretation of this study is quite complicated. Another study monitoring time-resolved fluorescence of PTL and several tryptophan mutants demonstrated that Trp-30 makes a significant contribution to the tryptophan fluorescence of PTL (17). The lid tryptophan, Trp-253, had a low quantum yield and contributed considerably less to the overall tryptophan fluorescence. This report did not include investigations of PTL fluorescence in the presence of bile salts or colipase. Consequently, the assumption that the large increase in steady state fluorescence of PTL in the presence of THL and bile salt results from changes in the environment of the lid domain tryptophan remains unproven.To determine whether the increased tryptophan fluorescence of PTL in THL and bile saIt represents a conformational change in PTL, we measured the effect of tryptophan substitution mutations on the activity and intrinsic steady state fluorescence of PTL. Each of the seven tryptophans was mutated to tyrosine. Selected tryptophans were mutated to alanine or phenylalanine. Each mutant PTL was expressed and purified. We monitored the effect of bile salts, colipase, THL, and mixtures of these compounds on the steady state fluorescence of PTL.  相似文献   

9.
The triglyceride lipases of the pancreas   总被引:7,自引:0,他引:7  
Pancreatic triglyceride lipase (PTL) and its protein cofactor, colipase, are required for efficient dietary triglyceride digestion. In addition to PTL, pancreatic acinar cells synthesize two pancreatic lipase related proteins (PLRP1 and PLRP2), which have a high degree of sequence and structural homology with PTL. PLRP1 has no known activity. PTL and PLRP2 differ in substrate specificity, behavior in bile salts and dependence on colipase. Each protein has a globular amino-terminal (N-terminal) domain, which contains the catalytic site for PTL and PLRP2, and a beta-sandwich carboxyl-terminal (C-terminal) domain, which includes the predominant colipase-binding site for PTL. Inactive and active conformations of PTL have been described. They differ in the position of a surface loop, the lid domain, and of the beta5-loop. In the inactive conformation, the lid covers the active site and, upon activation by bile salt micelles and colipase or by lipid-water interfaces, the lid moves dramatically to open and configure the active site. After the lid movement, PTL and colipase create a large hydrophobic plateau that can interact with the lipid-water interface. A hydrophobic surface loop in the C-terminal domain, the beta5' loop, may also contribute to the interfacial-binding domain of the PTL-colipase complex.  相似文献   

10.
Interfacial activation of Rhizomucor miehei lipase is accompanied by a hinge-type motion of a single helix (residues 83-94) that acts as a lid over the active site. Activation of the enzyme involves the displacement of the lid to expose the active site, suggesting that the dynamics of the lid could be of mechanistic and kinetic importance. To investigate possible activation pathways and to elucidate the effect of a hydrophobic environment (as would be provided by a lipid membrane) on the lid opening, we have applied molecular dynamics and Brownian dynamics techniques. Our results indicate that the lipase activation is enhanced in a hydrophobic environment. In nonpolar low-dielectric surroundings, the lid opens in approximately 100 ns in the BD simulations. In polar high-dielectric (aqueous) surroundings, the lid does not always open up in simulations of up to 900 ns duration, but it does exhibit some gating motion, suggesting that the enzyme molecule may exist in a partially active form before the catalytic reaction. The activation is controlled by the charged residues ARG86 and ASP91. In the inactive conformation, ASP91 experiences repulsive forces and pushes the lid toward the open conformation. Upon activation ARG86 approaches ASP61, and in the active conformation, these residues form a salt bridge that stabilizes the open conformation.  相似文献   

11.
The effect of organic solvent on the structure and dynamics of proteins was investigated by multiple molecular dynamics simulations (1 ns each) of Candida rugosa lipase in water and in carbon tetrachloride. The choice of solvent had only a minor structural effect. For both solvents the open and the closed conformation of the lipase were near to their experimental X-ray structures (C rms deviation 1–1.3 Å). However, the solvents had a highly specific effect on the flexibility of solvent-exposed side chains: polar side chains were more flexible in water, but less flexible in organic solvent. In contrast, hydrophobic residues were more flexible in organic solvent, but less flexible in water. As a major effect solvent changed the dynamics of the lid, a mobile element involved in activation of the lipase, which fluctuated as a rigid body about its average position. While in water the deviations were about 1.6 Å, organic solvent reduced flexibility to 0.9 Å. This increase rigidity was caused by two salt bridges (Lys85–Asp284, Lys75–Asp79) and a stable hydrogen bond (Lys75–Asn 292) in organic solvent. Thus, organic solvents stabilize the lid but render the side chains in the hydrophobic substrate-binding site more mobile. Figure Superimposition of open (black, PDB entry 1CRL) and closed (gray, PDB entry 1TRH) conformers of C. rugosa lipase. The mobile lid is indicatedThis revised version was published online in October 2004 with corrections to the Graphical Abstract.  相似文献   

12.
Small unilamelar vesicles of anionic phospholipids (SUV), such as 1-palmitoyl-2-oleoylglycero-sn-3-phosphoglycerol (POPG), provide an interface where Thermomyces lanuginosa triglyceride lipase (TlL) binds and adopts a catalytically active conformation for the hydrolysis of substrate partitioned in the interface, such as tributyrin or p-nitrophenylbutyrate, with an increase in catalytic rate of more than 100-fold for the same concentration of substrate [Berg et al. (1998) Biochemistry 37, 6615-6627.]. This interfacial activation is not seen with large unilamelar vesicles (LUV) of the same composition, or with vesicles of zwitterionic phospholipids such as 1-palmitoyl-2-oleoylglycero-sn-3-phosphocholine (POPC), independently of the vesicle size. Tryptophan fluorescence experiments show that lipase binds to all those types of vesicles with similar affinity, but it adopts different forms that can be correlated with the enzyme catalytic activity. The spectral change on binding to anionic SUV corresponds to the catalytically active, or "open" form of the enzyme, and it is not modified in the presence of substrate partitioned in the vesicles, as demonstrated with inactive mutants. This indicates that the displacement of the lid characteristic of lipase interfacial activation is induced by the anionic phospholipid interface without blocking the accessibility of the active site to the substrate. Experiments with a mutant containing only Trp89 in the lid show that most of the spectral changes on binding to POPG-SUVs take place in the lid region that covers the active site; an increase in Trp anisotropy indicates that the lid becomes less flexible in the active form, and quenching experiments show that it is significantly buried from the aqueous phase. On the other hand, results with a mutant where Trp89 is changed to Leu show that the environment of the structural tryptophans in positions 117, 221, and 260 is somehow altered on binding, although their mobility and solvent accessibility remains the same as in the inactive form in solution. The form of TlL bound to POPC-SUV or -LUV vesicles as well as to LUV vesicles of POPG has the same spectral signatures and corresponds to an inactive or "closed" form of the enzyme. In these interfaces, the lid is highly flexible, and Trp89 remains accessible to solvent. Resonance energy transfer experiments show that the orientation of TlL in the interface is different in the active and inactive forms. A model of interaction consistent with these data and the available X-ray structures is proposed. This is a unique system where the composition and physical properties of the lipid interface control the enzyme activity.  相似文献   

13.
Influence of isopropanol (iPrOH) on the structural dynamics of Thermomyces lanuginosa lipase (TLL) was studied by steady-state, time-resolved, and stopped-flow fluorescence spectroscopy, monitoring the intrinsic emission of Trp residues. The fluorescence of the four Trps of the wild-type enzyme report on the global changes of the whole lipase molecule. To monitor the conformational changes in the so-called "lid," an alpha-helical surface loop, the single Trp mutant W89m (W117F, W221H, W260H) was employed. Circular dichroism (CD) spectra revealed that iPrOH does not cause major alterations in the secondary structures of the wild-type TLL and W89m. With increasing [iPrOH], judged by the ratio of emission intensities at 350 nm and 330 nm, the average microenvironment of the Trps in the wild-type TLL became more hydrophobic, whereas Trp89 of W89m moved into a more hydrophilic microenvironment. Time-resolved fluorescence measurements revealed no major changes to be induced by iPrOH neither in the shorter fluorescence lifetime component (tau(1) = 0.5--1.2 ns) for the wild-type TLL nor in the longer fluorescence lifetime component (tau(2) = 4.8--6.0 ns) in the wild-type TLL and the W89m mutant. Instead, for W89m on increasing iPrOH from 25% to 50% the value for tau(1) increased significantly, from 0.43 to 1.5 ns. The shorter correlation time phi(1) of W89m had a minimum of 0.08 ns in 25% iPrOH. Judged from the residual anisotropy r(infinity) the amplitude of the local motion of Trp89 increased upon increasing [iPrOH] 10%. Stopped-flow fluorescence spectroscopy measurements suggested the lid to open within approximately 2 ms upon transfer of W89m into 25% iPrOH. Steady-state anisotropies and longer correlation times revealed increasing concentrations of iPrOH to result also in the formation of dimers as well as possibly also higher oligomers by TLL.  相似文献   

14.
The interfacial activation of many lipases at water/lipid interface is mediated by large conformational changes of a so‐called lid subdomain that covers up the enzyme active site. Here we investigated using molecular dynamic simulations in different explicit solvent environments (water, octane and water/octane interface) the molecular mechanism by which the lid motion of Burkholderia cepacia lipase might operate. Although B. cepacia lipase has so far only been crystallized in open conformation, this study reveals for the first time the major conformational rearrangements that the enzyme undergoes under the influence of the solvent, which either exposes or shields the active site from the substrate. In aqueous media, the lid switches from an open to a closed conformation while the reverse motion occurs in organic environment. In particular, the role of a subdomain facing the lid on B. cepacia lipase conformational rearrangements was investigated using position‐restrained MD simulations. Our conclusions indicate that the sole mobility of α9 helix side‐chains of B. cepacia lipase is required for the full completion of the lid conformational change which is essentially driven by α5 helix movement. The role of selected α5 hydrophobic residues on the lid movement was further examined. In silico mutations of two residues, V138 and F142, were shown to drastically modify the conformational behavior of B. cepacia lipase. Overall, our results provide valuable insight into the role played by the surrounding environment on the lid conformational rearrangement and the activation of B. cepacia lipase. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Effects of guanidine hydrochloride (GdnHCl) on the structure and dynamics of wild-type Humicola lanuginosa lipase (HLL) and its two mutants were studied. The latter were S146A (with the active site Ser replaced by Ala) and the single Trp mutant W89m, with substitutions W117F, W221H, and W260H. Steady-state, stopped-flow, and time-resolved laser-induced fluorescence spectroscopy were carried out as a function of [GdnHCl]. The maximum emission wavelength and fluorescence lifetimes revealed the microenvironment of the tryptophan(s) in these lipases to become more polar upon increasing [GdnHCl]. However, significant extent of tertiary structure in GdnHCl is suggested by the observation that both wild-type HLL and W89m remain catalytically active at rather high GdnHCl concentrations of >6 and 4.0 M, respectively. Changes in steady-state emission anisotropy, as well as variation in rotational correlation times and residual anisotropy values, demonstrate that upon increasing [GdnHCl] the structure of the lipases became more loose, with increasing amplitude of structural fluctuations. Finally, intermediate states in the course of exposure of the proteins to GdnHCl were revealed by stopped-flow fluorescence measurements.  相似文献   

16.
We designed a convenient, specific, sensitive and continuous lipase activity assay using natural long-chain triacylglycerols (TAGs). Oil was extracted from Parinari glaberrimum seed kernels and the purified TAGs used as a substrate for detecting low levels of lipase activities. The purified TAGs are naturally fluorescent. The presence of detergents above their critical micellar concentration dramatically increases the fluorescence of the parinaric acid released by various lipases. This increase is linear with time and proportional to the amount of lipase added. Quantities as low as 0.1 ng of pure pancreatic lipase could be detected under standard conditions (pH 8).

The interfacial activation of human pancreatic lipase (HPL) probably involves the motion of a lid covering the active site of the enzyme. We observed that the presence of either bile salts or a small proportion of water-miscible organic solvents (called activator compounds) considerably enhances the enzymatic activity of HPL on a monomeric solution of tripropionin. This finding suggests that the activator compounds may favor the opening of the lid. This hypothesis was checked by comparing the immunoreactivity of HPL and HPL with a mini-lid (HPL(-lid)) towards anti-HPL monoclonal antibodies (mAbs), in the presence and absence of the activator compounds.  相似文献   


17.
The binding of Thermomyces lanuginosa lipase and its mutants [TLL(S146A), TLL(W89L), TLL(W117F, W221H, W260H)] to the mixed micelles of cis-parinaric acid/sodium taurodeoxycholate at pH 5.0 led to the quenching of the intrinsic tryptophan fluorescence emission (300-380 nm) and to a simultaneous increase in the cis-parinaric acid fluorescence emission (380-500 nm). These findings were used to characterize the Thermomyces lanuginosa lipase/cis-parinaric acid interactions occurring in the presence of sodium taurodeoxycholate.The fluorescence resonance energy transfer and Stern-Volmer quenching constant values obtained were correlated with the accessibility of the tryptophan residues to the cis-parinaric acid and with the lid opening ability of Thermomyces lanuginosa lipase (and its mutants). TLL(S146A) was found to have the highest fluorescence resonance energy transfer. In addition, a TLL(S146A)/oleic acid complex was crystallised and its three-dimensional structure was solved. Surprisingly, two possible binding modes (sn-1 and antisn1) were found to exist between oleic acid and the catalytic cleft of the open conformation of TLL(S146A). Both binding modes involved an interaction with tryptophan 89 of the lipase lid, in agreement with fluorescence resonance energy transfer experiments.As a consequence, we concluded that TLL(S146A) mutant is not an appropriate substitute for the wild-type Thermomyces lanuginosa lipase for mimicking the interaction between the wild-type enzyme and lipids.  相似文献   

18.
Two conformational states of Candida rugosa lipase.   总被引:5,自引:4,他引:1       下载免费PDF全文
The structure of Candida rugosa lipase in a new crystal form has been determined and refined at 2.1 A resolution. The lipase molecule was found in an inactive conformation, with the active site shielded from the solvent by a part of the polypeptide chain-the flap. Comparison of this structure with the previously determined "open" form of this lipase, in which the active site is accessible to the solvent and presumably the substrate, shows that the transition between these 2 states requires only movement of the flap. The backbone NH groups forming the putative oxyanion hole do not change position during this rearrangement, indicating that this feature is preformed in the inactive state. The 2 lipase conformations probably correspond to states at opposite ends of the pathway of interfacial activation. Quantitative analysis indicates a large increase of the hydrophobic surface in the vicinity of the active site. The flap undergoes a flexible rearrangement during which some of its secondary structure refolds. The interactions of the flap with the rest of the protein change from mostly hydrophobic in the inactive form to largely hydrophilic in the "open" conformation. Although the flap movement cannot be described as a rigid body motion, it has very definite hinge points at Glu 66 and at Pro 92. The rearrangement is accompanied by a cis-trans isomerization of this proline, which likely increases the energy required for the transition between the 2 states, and may play a role in the stabilization of the active conformation at the water/lipid interface. Carbohydrate attached at Asn 351 also provides stabilization for the open conformation of the flap.  相似文献   

19.
A Dessen  J Tang  H Schmidt  M Stahl  J D Clark  J Seehra  W S Somers 《Cell》1999,97(3):349-360
Cytosolic phospholipase A2 initiates the biosynthesis of prostaglandins, leukotrienes, and platelet-activating factor (PAF), mediators of the pathophysiology of asthma and arthritis. Here, we report the X-ray crystal structure of human cPLA2 at 2.5 A. cPLA2 consists of an N-terminal calcium-dependent lipid-binding/C2 domain and a catalytic unit whose topology is distinct from that of other lipases. An unusual Ser-Asp dyad located in a deep cleft at the center of a predominantly hydrophobic funnel selectively cleaves arachidonyl phospholipids. The structure reveals a flexible lid that must move to allow substrate access to the active site, thus explaining the interfacial activation of this important lipase.  相似文献   

20.
Thermal stability of wild type Humicola lanuginosa lipase (wt HLL) and its two mutants, W89L and the single Trp mutant W89m (W117F, W221H, and W260H), were compared. Differential scanning calorimetry revealed unfolding of HLL at T(d)=74.4 degrees C whereas for W89L and W89m this endotherm was decreased to 68.6 and 62 degrees C, respectively, demonstrating significant contribution of the above Trp residues to the structural stability of HLL. Fluorescence emission spectra revealed the average microenvironment of Trps of wt HLL and W89L to become more hydrophilic at elevated temperatures whereas the opposite was true for W89m. These changes in steady-state emission were sharp, with midpoints (T(m)) at approx. 70.5, 61.0, and 65.5 degrees C for wt HLL, W89L, and W89m, respectively. Both steady-state and time resolved fluorescence spectroscopy further indicated that upon increasing temperature, the local movements of tryptophan(s) in these lipases were first attenuated. However, faster mobilities became evident when the unfolding temperatures (T(m)) were exceeded, and the lipases became less compact as indicated by the increased hydrodynamic radii. Even at high temperatures (up to 85 degrees C) a significant extent of tertiary and secondary structure was revealed by circular dichroism. Activity measurements are in agreement with increased amplitudes of conformational fluctuations of HLL with temperature. Our results also indicate that the thermal unfolding of these lipases is not a two-state process but involves intermediate states. Interestingly, a heating and cooling cycle enhanced the activity of the lipases, suggesting the protein to be trapped in an intermediate, higher energy state. The present data show that the mutations, especially W89L in the lid, contribute significantly to the stability, structure and activity of HLL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号