首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is little information on the mechanisms responsible for muscle recovery following a catabolic condition. To address this point, we reloaded unweighted animals and investigated protein turnover during recovery from this highly catabolic state and the role of proteolysis in the reorganization of the soleus muscle. During early recovery (18 h of reloading) both muscle protein synthesis and breakdown were elevated (+65%, P<0.001 and +22%, P<0.05, respectively). However, only the activation of non-lysosomal and Ca(2+)-independent proteolysis was responsible for increased protein breakdown. Accordingly, mRNA levels for ubiquitin and 20S proteasome subunits C8 and C9 were markedly elevated (from +89 to +325%, P<0.03) and actively transcribed as shown by the analysis of polyribosomal profiles. In contrast, both cathepsin D and 14-kDa-ubiquitin conjugating enzyme E2 mRNA levels decreased, suggesting that the expression of such genes is an early marker of reversed muscle wasting. Following 7 days of reloading, protein synthesis was still elevated and there was no detectable change in protein breakdown rates. Accordingly, mRNA levels for all the proteolytic components tested were back to control values even though an accumulation of high molecular weight ubiquitin conjugates was still detectable. This suggests that soleus muscle remodeling was still going on. Taken together, our observations suggest that enhanced protein synthesis and breakdown are both necessary to recover from muscle atrophy and result in catch-up growth. The observed non-coordinate regulation of proteolytic systems is presumably required to target specific classes of substrates (atrophy-specific protein isoforms, damaged proteins) for replacement and/or elimination.  相似文献   

2.
3.
Muscle atrophy is a prominent feature of catabolic conditions and in animal models of these conditions there is accelerated muscle proteolysis that is dependent on the ubiquitin-proteasome system. However, ubiquitin system cannot degrade actomyosin or myofibrils even though it rapidly degrades actin or myosin. We identified caspase-3 as the initial and potentially rate-limiting proteolytic step that cleaves actomyosin/myofibrils. In rodent models of catabolic conditions, we find that caspase-3 is activated to cleave muscle proteins and actomyosin to fragments that are rapidly degraded by the ubiquitin system. This initial proteolytic step in muscle can be recognized because it leaves a footprint of a characteristic 14-kDa actin band. Stimulation of caspase-3 activity depends on activation of phosphatidylinositol 3-kinase. When we suppressed this enzyme in muscle cells, protein breakdown increased as did the expression of caspase-3. In addition, there was increased expression of E3-ubiquitin-conjugating enzymes that are involved in muscle proteolysis, atrogin-1/MAFbx and MuRF1. Thus, when phosphatidylinositol 3-kinase activity is low in muscle cells or rat muscle, both caspase-3 and the ubiquitin-proteasome system are stimulated to degrade protein. Additional investigations will be needed to define the cell signaling processes that activate muscle proteolysis in uremia and catabolic conditions.  相似文献   

4.
Previous studies suggest that elevated temperature stimulates protein degradation in skeletal muscle, but the intracellular mechanisms are not fully understood. We tested the role of different proteolytic pathways in temperature-dependent degradation of long- and short-lived proteins in cultured L6 myotubes. When cells were cultured at different temperatures from 37 to 43 degrees C, the degradation of both classes of proteins increased, with a maximal effect noted at 41 degrees C. The effect of high temperature was more pronounced on long-lived than on short-lived protein degradation. By using blockers of individual proteolytic pathways, we found evidence that the increased degradation of both long-lived and short-lived proteins at high temperature was independent of lysosomal and calcium-mediated mechanisms but reflected energy-proteasome-dependent degradation. mRNA levels for enzymes and other components of different proteolytic pathways were not influenced by high temperature. The results suggest that hyperthermia stimulates the degradation of muscle proteins and that this effect of temperature is regulated by similar mechanisms for short- and long-lived proteins. Elevated temperature may contribute to the catabolic response in skeletal muscle typically seen in sepsis and severe infection.  相似文献   

5.
Chronic or acute inflammation may participate in the etiology of cancer cachexia. To investigate the interaction between tumor and a secondary inflammatory stimulus on muscle wasting, rats with and without tumors (Yoshida ascites hepatoma) received low doses of endotoxin (LPS, 400 microg/kg sc) or saline. Nitrogen balance was measured 24 h before and after LPS/saline. Epitrochlearis muscle was used to measure in vitro protein metabolism, and gastrocnemius muscle was used for quantification of the mRNA for components of the ubiquitin proteolytic pathway. The YAH reduced muscle mass (P = 0.002), increased muscle protein degradation (P = 0.042), and elevated mRNA expression of components of the ubiquitin proteolytic pathway (P < 0.01) including ubiquitin, ubiquitin-conjugating enzyme E2(14k), and ubiquitin ligases muscle RING Finger 1 and atrogin-1. Although the selected low dose of LPS had no impact on protein metabolism in control rats, LPS in rats bearing YAH caused weight loss (P = 0.0007), lowered nitrogen balance (P = <0.0001), and increased muscle protein degradation (P = 0.0336). In conclusion, the presence of a tumor can potentiate whole body and muscle-specific catabolic losses of protein in response to a stimulus that is not catabolic in healthy animals. This effect might be dependent on the inflammatory nature of the tumor.  相似文献   

6.
One of the most important effects of aging is sarcopenia, which is associated with impaired locomotion and general weakness. In addition, there is increased susceptibility to illness in aging, which often results in muscle wasting episodes. In such instances, the mobilization of muscle proteins provides free amino acids that are used for energetic purpose, the synthesis of acute phase proteins, and the immune response. However, since muscle protein mass is already depleted, the ability of the aged organism to recover from stress is impaired. Therefore, elucidating the mechanisms that result in sarcopenia is of obvious importance. Age-related changes in protein synthesis and proteolysis are rather small and our current methodology does not enable one to establish unequivocally whether sarcopenia results from depressed protein synthesis, increased proteolysis or both. By contrast, in anabolic and catabolic periods, a number of dysregulations in muscle protein turnover became clearly apparent. The aim of this review is to provide an overview of such altered responses to nutrients and catabolic treatments, which may ultimately contribute to explain sarcopenia. This includes impaired recovery in catabolic states, impaired anabolic effects of nutrients, in particular leucine, and a lack of regulation of the ubiquitin-proteasome proteolytic system. These alterations are discussed with respect to modifications in the insulin/IGF-1 axis and glucocorticoid related effects.  相似文献   

7.
8.
Hepatic cirrhosis is associated with negative nitrogen balance and loss of lean body mass. This study aimed to identify the specific proteolytic pathways activated in skeletal muscles of cirrhotic rats. TNF-alpha can stimulate muscle proteolysis; therefore, a potential relationship between TNF-alpha and muscle wasting in liver cirrhosis was also evaluated. Cirrhosis was induced by bile duct ligation (BDL) in male adult Sprague-Dawley rats. mRNA and protein levels of various targets were determined by RT-PCR and Western blotting, respectively. The proteolytic rate was measured ex vivo using isolated muscles. Compared with sham-operated controls, BDL rats had an increased degradation rate of muscle proteins and enhanced gene expression of ubiquitin, 14-kDa ubiquitin carrier protein E2, and the proteasome subunits C2 and C8 (P < 0.01). The muscle protein levels of free ubiquitin and conjugated ubiquitin levels were also elevated (P < 0.01). However, there was no difference between the two groups with regard to cathepsin and calpain mRNA levels. Cirrhotic muscle TNF-alpha levels were increased and correlated positively with free and conjugated ubiquitin (P < 0.01). We conclude that the ubiquitin-proteasome system is involved in muscle wasting of rats with BDL-induced cirrhosis. TNF-alpha might play a role in mediating activation of this proteolytic pathway, probably through a local mechanism.  相似文献   

9.
Muscle wasting is commonly seen in patients with hyperthyroidism and is mainly caused by stimulated muscle proteolysis. Loss of muscle mass in several catabolic conditions is associated with increased expression of the muscle‐specific ubiquitin ligases atrogin‐1 and MuRF1 but it is not known if atrogin‐1 and MuRF1 are upregulated in hyperthyroidism. In addition, it is not known if thyroid hormone increases the activity of proteolytic mechanisms other than the ubiquitin–proteasome pathway. We tested the hypotheses that experimental hyperthyroidism in rats, induced by daily intraperitoneal injections of 100 µg/100 g body weight of triiodothyronine (T3), upregulates the expression of atrogin‐1 and MuRF1 in skeletal muscle and stimulates lysosomal, including cathepsin L, calpain‐, and caspase‐3‐dependent protein breakdown in addition to proteasome‐dependent protein breakdown. Treatment of rats with T3 for 3 days resulted in an approximately twofold increase in atrogin‐1 and MuRF1 mRNA levels. The same treatment increased proteasome‐, cathepsin L‐, and calpain‐dependent proteolytic rates by approximately 40% but did not influence caspase‐3‐dependent proteolysis. The expression of atrogin‐1 and MuRF1 remained elevated during a more prolonged period (7 days) of T3 treatment. The results provide support for a role of the ubiquitin–proteasome pathway in muscle wasting during hyperthyroidism and suggest that other proteolytic pathways as well may be activated in the hyperthyroid state. J. Cell. Biochem. 108: 963–973, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Aerobic exercise training (AET) is an important mechanical stimulus that modulates skeletal muscle protein turnover, leading to structural rearrangement. Since the ubiquitin-proteasome system (UPS) and calpain system are major proteolytic pathways involved in protein turnover, we aimed to investigate the effects of intensity-controlled AET on the skeletal muscle UPS and calpain system and their association to training-induced structural adaptations. Long-lasting effects of AET were studied in C57BL/6J mice after 2 or 8 wk of AET. Plantaris cross-sectional area (CSA) and capillarization were assessed by myosin ATPase staining. mRNA and protein expression levels of main components of the UPS and calpain system were evaluated in plantaris by real-time PCR and Western immunoblotting, respectively. No proteolytic system activation was observed after 2 wk of AET. Eight weeks of AET resulted in improved running capacity, plantaris capillarization, and CSA. Muscle RING finger-1 mRNA expression was increased in 8-wk-trained mice. Accordingly, elevated 26S proteasome activity was observed in the 8-wk-trained group, without accumulation of ubiquitinated or carbonylated proteins. In addition, calpain abundance was increased by 8 wk of AET, whereas no difference was observed in its endogenous inhibitor calpastatin. Taken together, our findings indicate that skeletal muscle enhancements, as evidenced by increased running capacity, plantaris capillarization, and CSA, occurred in spite of the upregulated UPS and calpain system, suggesting that overactivation of skeletal muscle proteolytic systems is not restricted to atrophying states. Our data provide evidence for the contribution of the UPS and calpain system to metabolic turnover of myofibrillar proteins and skeletal muscle adaptations to AET.  相似文献   

11.
Chronic arthritis is a catabolic state associated with an inhibition of the IGF system and a decrease in body weight. Cachexia and muscular wasting is secondary to protein degradation by the ubiquitin-proteasome pathway. The aim of this work was to analyze the effect of adjuvant-induced arthritis on the muscle-specific ubiquitin ligases muscle ring finger 1 (MuRF1) and muscle atrophy F-box (MAFbx) as well as on IGF-I and IGF-binding protein-5 (IGFBP-5) gene expression in the skeletal muscle. We also studied whether the synthetic ghrelin receptor agonist, growth hormone releasing peptide-2 (GHRP-2), was able to prevent arthritis-induced changes in the skeletal muscle. Arthritis induced an increase in MuRF1, MAFbx (P < 0.01), and tumor necrosis factor (TNF)-alpha mRNA (P < 0.05) in the skeletal muscle. Arthritis decreased the serum IGF-I and its gene expression in the liver (P < 0.01), whereas it increased IGF-I and IGFBP-5 gene expression in the skeletal muscle (P < 0.01). Administration of GHRP-2 for 8 days prevented the arthritis-induced increase in muscular MuRF1, MAFbx, and TNF-alpha gene expression. GHRP-2 treatment increased the serum concentrations of IGF-I and the IGF-I mRNA in the liver and in the cardiac muscle and decreased muscular IGFBP-5 mRNA both in control and in arthritic rats (P < 0.05). GHRP-2 treatment increased muscular IGF-I mRNA in control rats (P < 0.01), but it did not modify the muscular IGF-I gene expression in arthritic rats. These data indicate that arthritis induces an increase in the activity of the ubiquitin-proteasome proteolytic pathway that is prevented by GHRP-2 administration. The parallel changes in muscular IGFBP-5 and TNF-alpha gene expression with the ubiquitin ligases suggest that they can participate in skeletal muscle alterations during chronic arthritis.  相似文献   

12.
13.
14.
Insulin-like growth factor-1 and muscle wasting in chronic heart failure   总被引:4,自引:0,他引:4  
Chronic heart failure is a clinical syndrome of cardiac origin, which affects various organ systems. It is associated with metabolic abnormalities leading to a catabolic syndrome in advanced stages of the disease. As in several other chronic diseases, skeletal muscle dysfunction and structural muscle abnormalities result in progressive muscle wasting and cachexia. These changes are accompanied by increased expression of proinflammatory cytokines, increased rate of apoptosis and activation of the proteolytic ubiquitin-proteasome pathway. Further, reduced expression of the local anabolic insulin-like growth factor-1 has been demonstrated in skeletal muscle of animals and patients with chronic heart failure. This suppression occurs in the presence of normal serum levels of insulin-like growth factor-1. In addition to catabolic effects of proinflammatory cytokines, these recent findings are consistent with reduced anabolism involving altered local insulin-like growth factor-1 levels in progressive muscle atrophy in chronic heart failure. This article describes local effects of insulin-like growth factor-1 on skeletal muscle function and morphology, its role in stem cell recruitment and muscle regeneration as well as its regulation in circumstances of muscle inflammation and wasting.  相似文献   

15.
Insulin plays a major role in the regulation of skeletal muscle protein turnover but its mechanism of action is not fully understood, especially in vivo during catabolic states. These aspects are presently reviewed. Insulin inhibits the ATP-ubiquitin proteasome proteolytic pathway which is presumably the predominant pathway involved in the breakdown of muscle protein. Evidence of the ability of insulin to stimulate muscle protein synthesis in vivo was also presented. Many catabolic states in rats, e.g. streptozotocin diabetes, glucocorticoid excess or sepsis-induced cytokines, resulted in a decrease in insulin action on protein synthesis or degradation. The effect of catabolic factors would therefore be facilitated. In contrast, the antiproteolytic action of insulin was improved during hyperthyroidism in man and early lactation in goats. Excessive muscle protein breakdown should therefore be prevented. In other words, the anabolic hormone insulin partly controlled the 'catabolic drive'. Advances in the understanding of insulin signalling pathways and targets should provide information on the interactions between insulin action, muscle protein turnover and catabolic factors.  相似文献   

16.
Ubiquitin-dependent proteolysis is activated in skeletal muscle atrophying in response to various catabolic stimuli. Previous studies have demonstrated activation of ubiquitin conjugation. Because ubiquitination can also be regulated by deubiquitinating enzymes, we used degenerate oligonucleotides derived from conserved sequences in the ubiquitin-specific protease (UBP) family of deubiquitinating enzymes in RT-PCR with skeletal muscle RNA to amplify putative deubiquitinating enzymes. We identified USP19, a 150-kDa deubiquitinating enzyme that is widely expressed in various tissues including skeletal muscle. Expression of USP19 mRNA increased by approximately 30-200% in rat skeletal muscle atrophying in response to fasting, streptozotocin-induced diabetes, dexamethasone treatment, and cancer. Increased mRNA levels during fasting returned to normal with refeeding, but 1 day later than the normalization of rates of proteolysis and coincided instead with recovery of muscle mass. Indeed, in all catabolic treatments, USP19 mRNA was inversely correlated with muscle mass and provided an index of muscle mass that may be useful in many pathological conditions, using small human muscle biopsies. The increased expression of this deubiquitinating enzyme under conditions of increased proteolysis suggests that it may play a role in regeneration of free ubiquitin either coincident with or after proteasome-mediated degradation of substrates. USP19 may also be involved in posttranslational processing of polyubiquitin produced de novo in response to induction of the polyubiquitin genes seen under these conditions. Deubiquitinating enzymes thus appear involved in muscle wasting and implicate a widening web of regulation of genes in the ubiquitin system in this process.  相似文献   

17.
Eicosapentaenoic acid (EPA) has been shown to attenuate muscle atrophy in cancer, starvation and hyperthermia by downregulating the increased expression of the ubiquitin-proteasome proteolytic pathway leading to a reduction in protein degradation. In the current study EPA (0.5 g/kg) administered to septic mice completely attenuated the increased protein degradation in skeletal muscle by preventing the increase in both gene expression and protein concentration of the α- and β-subunits of the 20S proteasome, as well as functional activity of the proteasome, as measured by the ‘chymotrypsin-like’ enzyme activity. These results suggest that muscle protein catabolism in sepsis is mediated by the same intracellular signalling pathways as found in other catabolic conditions.  相似文献   

18.
Cephalopods have relatively high rates of protein synthesis compared to rates of protein degradation, along with minimal carbohydrate and lipid reserves. During food deprivation on board protein is catabolized as a metabolic fuel. The aim of the current study was to assess whether biochemical indices of protein synthesis and proteolytic mechanisms were altered in cuttlefish, Sepia officinalis, starved for 7 days. In mantle muscle, food deprivation is associated with a decrease in protein synthesis, as indicated by a decrease in the total RNA level and dephosphorylation of key signaling molecules, such as the eukaryote binding protein, 4E-BP1 (regulator of translation) and Akt. The ubiquitination-proteasome system (UPS) is activated as shown by an increase in the levels of proteasome β-subunit mRNA, polyubiquitinated protein, and polyubiquitin mRNA. As well, cathepsin activity levels are increased, suggesting increased proteolysis through the lysosomal pathway. Together, these mechanisms could supply amino acids as metabolic fuels. In gill, the situation is quite different. It appears that during the first stages of starvation, both protein synthesis and protein degradation are enhanced in gill. This is based upon increased phosphorylation of 4E-BP1 and enhanced levels of UPS indicators, especially 20S proteasome activity and polyubiquitin mRNA. It is proposed that an increased protein turnover is related to gill remodeling perhaps to retain essential hemolymph-borne compounds.  相似文献   

19.
To investigate changes in muscle metabolism during lactation, serial biopsy of the triceps brachii was conducted in first-parity sows subjected to three degrees of selective protein mobilization through restriction of dietary protein intake (see Clowes EJ, Aherne FX, Foxcroft GR, and Baracos VE. J Anim Sci 81: 753-764, 2003). Muscle biopsies were taken 7 days before parturition and at 12 and 23 days of lactation. The following changes occurred after parturition, were progressive, and were significantly magnified in animals under the greatest degree of dietary protein restriction and hence of protein mobilization. Decreased RNA-to-DNA ratio (capacity for protein synthesis) was observed. The presence of increased expression of several elements of the ubiquitin proteasome proteolytic pathway suggested a robust catabolic response. However, as lactation progressed, and especially under conditions of increased dietary protein restriction, protein mobilization increased, muscle RNA-to-DNA ratio fell further, protease gene expression continued to rise, tissue free glutamine levels rose dramatically, and essential amino acid levels, especially branched-chain amino acids and threonine, fell to below prepartum levels.  相似文献   

20.
The role of TNF-alpha in muscle catabolism is well established, but little is known about the mechanisms of its catabolic action. One possibility could be that TNF-alpha impairs the production of local growth factors like IGF-I. The aim of this study was to investigate whether TNF-alpha can directly inhibit IGF-I gene and protein expression in muscle. First, we investigated whether the acute inflammation induced by endotoxin injection changes IGF-I and TNF-alpha mRNA in rat tibialis anterior muscle. Endotoxin rapidly increased TNF-alpha mRNA (7-fold at 1 h, P < 0.001) and later decreased IGF-I mRNA (-73% at 12 h, P < 0.001). Furthermore, in a model of C2C12 myotubes, TNF-alpha strongly inhibited IGF-I mRNA and protein (-73 and -47% after 72 h, P < 0.001 and P < 0.01, respectively). Other proinflammatory cytokines failed to inhibit IGF-I mRNA. The effect of TNF-alpha on IGF-I mRNA was not mediated by nitric oxide, and the activation of NF-kappaB was insufficient to inhibit IGF-I expression. Taken together, our data suggest that TNF-alpha induced in muscle after LPS injection can locally inhibit IGF-I expression. The inhibition of muscle IGF-I production could contribute to the catabolic effect of TNF-alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号