首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The modulation of serotonin uptake kinetics by Na+, Cl-, H+, and K+ was investigated in brush-border membrane vesicles prepared from normal human term placentas. The presence of Na+ and Cl- in the external medium was mandatory for the function of the serotonin transporter. In both cases, the initial uptake rate of serotonin was a hyperbolic function of the ion concentration, indicating involvement of one Na+ and one Cl- per transport of one serotonin molecule. The apparent dissociation constant for Na+ and Cl- was 145 and 79 mM, respectively. The external Na+ increased the Vmax of the transporter and also increased the affinity of the transporter for serotonin. The external Cl- also showed similar effects on the Vmax and the Kt, but its effect on the Kt was small compared to that of Na+. The presence of an inside-acidic pH, with or without a transmembrane pH gradient, stimulated the NaCl-dependent serotonin uptake. The effect of internal [H+] on the transport function was to increase the Vmax and decrease the affinity of the transporter for serotonin. The presence of K+ inside the vesicles also greatly stimulated the initial rates of serotonin uptake, and the stimulation was greater at pH 7.5 than at pH 6.5. This stimulation was a hyperbolic function of the internal K+ concentration at both pH values, indicating involvement of one K+ per transport of one serotonin molecule. The apparent dissociation constant for K+ was 5.6 mM at pH 6.5 and 4.0 mM at pH 7.5. The effects of internal [K+] on the uptake kinetics were similar to those of internal [H+].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The mechanism of pantothenate transport into rabbit renal brush-border membrane vesicles was studied. Under voltage-clamped conditions, an inward NaCl gradient induced the transient accumulation of pantothenate against its concentration gradient, indicating Na+/pantothenate cotransport. K+, Rb+, Li+, NH4+, and choline+ were ineffective in replacing Na+. Pantothenate analogs, D-glucose, and various carboxylic acids did not inhibit Na+-dependent pantothenate transport, suggesting that this system is specific for pantothenate. Kinetic analysis of the Na+-dependent pantothenate uptake revealed a single transport system which obeyed Michaelis-Menten kinetics (Km = 16 microM and Vmax = 6.7 pmol X mg-1 X 10 s-1). Imposition of an inside-negative membrane potential caused net uphill pantothenate accumulation in the presence of Na+ but absence of a Na+ gradient, indicating that Na+/pantothenate cotransport is electrogenic. The relationship between extravesicular Na+ concentration and pantothenate transport measured under voltage-clamped conditions was sigmoidal: a Hill coefficient (napp) of 2 and a [Na+]0.5 of 55 mM were calculated. It is suggested that an anionic pantothenate1- molecule is cotransported with two Na+ to give a net charge of +1. The coupling of pantothenate transport to the Na+ electrochemical gradient may provide an efficient mechanism for reabsorption of pantothenate in the kidney.  相似文献   

3.
The driving forces for L-glutamate transport were determined in purified canalicular (cLPM) and basolateral (i.e. sinusoidal and lateral; blLPM) rat liver plasma membrane vesicles. Initial rates of L-glutamate uptake in cLPM vesicles were stimulated by a Na+ gradient (Na+o greater than Na+i), but not by a K+ gradient. Stimulation of L-glutamate uptake was specific for Na+, temperature sensitive, and independent of nonspecific binding. Sodium-dependent L-glutamate uptake into cLPM vesicles exhibited saturation kinetics with an apparent Km of 24 microM, and a Vmax of 21 pmol/mg X min at an extravesicular sodium concentration of 100 mM. Specific anionic amino acids inhibited L-[3H]glutamate uptake and accelerated the exchange diffusion of L-[3H]glutamate. An outwardly directed K+ gradient (K+i greater than K+o) further increased the Na+ gradient (Na+o greater than Na+i)-dependent uptake of L-glutamate in cLPM vesicles, resulting in a transient accumulation of L-glutamate above equilibrium values (overshoot). The K+ effect had an absolute requirement for Na+. In contrast, in blLPM the initial rates of L-glutamate uptake were only minimally stimulated by a Na+ gradient, an effect that could be accounted for by contamination of the blLPM vesicles with cLPM vesicles. These results indicate that hepatic Na+ gradient-dependent transport of L-glutamate occurs at the canalicular domain of the plasma membrane, whereas transport of L-glutamate across sinusoidal membranes results mainly from passive diffusion. These findings provide an explanation for the apparent discrepancy between the ability of various in vitro liver preparations to transport glutamate and suggest that a canalicular glutamate transport system may serve to reabsorb this amino acid from bile.  相似文献   

4.
ATP-dependent Na+ transport in cardiac sarcolemmal vesicles   总被引:3,自引:0,他引:3  
Although the enzyme (Na+ + K+)-ATPase has been extensively characterized, few studies of its major role, ATP-dependent Na+ pumping, have been reported in vesicular preparations. This is because it is extremely difficult to determine fluxes of isotopic Na+ accurately in most isolated membrane systems. Using highly purified cardiac sarcolemmal vesicles, we have developed a new technique to detect relative rates of ATP-dependent Na+ transport sensitively. This technique relies on the presence of Na+-Ca2+ exchange and ATP-driven Na+ pump activities on the same inside-out sarcolemmal vesicles. ATP-dependent Na+ uptake is monitored by a subsequent Nai+-dependent Ca2+ uptake reaction (Na+-Ca2+ exchange) using 45Ca2+. We present evidence that the Na+-Ca2+ exchange will be linearly related to the prior active Na+ uptake. Although this method is indirect, it is much more sensitive than a direct approach using Na+ isotopes. Applying this method, we measure cardiac ATP-dependent Na+ transport and (Na+ + K+)-ATPase activities in identical ionic media. We find that the (Na+ + K+)-ATPase and the Na+ pump have identical dependencies on both Na+ and ATP. The dependence on [Na+] is sigmoidal, with a Hill coefficient of 2.8. Na+ pumping is half-maximal at [Na+] = 9 mM. The Km for ATP is 0.21 mM. ADP competitively inhibits ATP-dependent Na+ pumping. This approach should allow other new investigations on ATP-dependent Na+ transport across cardiac sarcolemma.  相似文献   

5.
The uptake of taurine by luminal membrane vesicles from pars convoluta and pars recta of rabbit proximal tubule was examined. In pars convoluta, the transport of taurine was characterized by two Na(+)-dependent (Km1 = 0.086 mM, Km2 = 5.41 mM) systems, and one Na(+)-independent (Km = 2.87 mM) system, which in the presence of an inwardly directed H(+)-gradient was able to drive the transport of taurine into these vesicles. By contrast, in luminal membrane vesicles from pars recta, the transport of taurine occurred via a dual transport system (Km1 = 0.012 mM, Km2 = 5.62 mM), which was strictly dependent on Na+. At acidic pH with or without a H(+)-gradient, the Na(+)-dependent flux of taurine was drastically reduced. In both kind of vesicles, competition experiments only showed inhibition of the Na(+)-dependent high-affinity taurine transporter in the presence of beta-alanine, whereas there was no significant inhibition with alpha-amino acids, indicating a beta-amino acid specific transport system. Addition of beta-alanine, L-alanine, L-proline and glycine, but not L-serine reduced the H(+)-dependent uptake of taurine to approx. 50%. Moreover, only the Na(+)-dependent high-affinity transport systems in both segments specifically required Cl-. Investigation of the stoichiometry indicated 1.8 Na+: 1 Cl-: 1 taurine (high affinity), 1 Na+: 1 taurine (low affinity) and 1 H+: 1 taurine in pars convoluta. In pars recta, the data showed 1.8 Na+: 1 Cl-: 1 taurine (high affinity) and 1 Na+: 1 taurine (low affinity).  相似文献   

6.
Na+-dependent uptake of dicarboxylic amino acids in membrane saccules, due to exchange diffusion and independent of ion gradients, was highly sensitive to inhibition by K+. The IC50 was 1-2 mM under a variety of conditions (i.e., whole tissue or synaptic membranes, frozen/thawed or fresh, D-[3H]aspartate (10-1000 nM) or L-[3H]glutamate (100 nM), phosphate or Tris buffer, NaCl or Na acetate, presence or absence of Ca2+ and Mg2+). The degree of inhibition by K+ was also not affected on removal of ion gradients by ionophores, or by extensive washing with H2O and reloading of membrane saccules with glutamate and incubation medium in the presence or absence of K+ (3 mM, i.e., IC70). Rb+, NH4+, and, to a lesser degree Cs+, but not Li+, could substitute for K+. [K+] showed a competitive relationship to [Na+]2. Incubation with K+ before or after uptake suggested that the ion acts in part by allowing net efflux, thus reducing the internal pool of amino acid against which D-[3H]aspartate exchanges, and in part by inhibiting the interaction of Na+ and D-[3H]aspartate with the transporter. The current model of the Na+-dependent high-affinity acidic amino acid transport carrier allows the observations to be explained and reconciled with previous seemingly conflicting reports on stimulation of acidic amino acid uptake by low concentrations of K+. The findings correct the interpretation of recent reports on a K+-induced inhibition of Na+-dependent "binding" of glutamate and aspartate, and partly elucidate the mechanism of action.  相似文献   

7.
Basolateral plasma membranes were prepared from rat parotid gland after centrifugation in a self-orienting Percoll gradient. K+-dependent phosphatase [Na+ + K+)-ATPase), a marker enzyme for basolateral membranes, was enriched 10-fold from tissue homogenates. Using this preparation, the transport of alpha-aminoisobutyrate was studied. The uptake of alpha-aminoisobutyrate was Na+-dependent, osmotically sensitive, and temperature-dependent. In the presence of a Na+ gradient between the extra- and intravesicular solutions, vesicles showed an 'overshoot' accumulation of alpha-aminoisobutyrate. Sodium-dependent alpha-aminoisobutyrate uptake was saturable, exhibiting an apparent Km of 1.28 +/- 0.35 mM and Vmax of 780 +/- 170 pmol/min per mg protein. alpha-Aminoisobutyrate transport was inhibited considerably by monensin, but incubating with ouabain was without effect. These results suggest that basolateral membrane vesicles, which possess an active amino acid transport system (system A), can be prepared from the rat parotid gland.  相似文献   

8.
1,25-Dihydroxycholecalciferol, when present at and above 10 nM in an organ-culture system of embryonic chick jejunum, approximately doubled the rate of Na(+)-gradient-driven D-glucose uptake by brush-border membrane vesicles, but had no effect on Na(+)-independent D-glucose transfer. The sterol also had no effect on Na+ influx along an outside/inside Na+ gradient ([Na+]o = 100 mM; [Na+]i = 0 mM). This renders it unlikely that in embryonic intestine, calcitriol raises Na(+)-dependent D-glucose transport through changes in the electrochemical Na+ gradient. D-[U-14C]Glucose tracer exchange, measured under voltage-clamp condition at Na+/D-glucose equilibrium, revealed that addition of calcitriol to the culture medium approximately doubled the activity of the Na+/D-glucose transporter in the brush-border membrane. This was also reflected by an corresponding increase in the maximal velocity of the transfer process. Increased [3H]phlorizin binding after calcitriol treatment suggests that the steroid hormone activates Na+/D-glucose transport through increasing the number of carrier molecules in the brush-border membrane. 10 nM triiodothyronine, which by itself has no effect on Na(+)-dependent D-glucose transport, potentiated the effect of 1,25-dihydroxycholecalciferol such that in the presence of both hormones, Na+/D-glucose-carrier activity was increased fourfold above control levels.  相似文献   

9.
L-Glutamate and L-aspartate transport into osmotically active intestinal brush border membrane vesicles is specifically increased by Na+ gradient (extravesicular greater than intravesicular) which in addition energizes the transient accumulation (overshoot) of the two amino acids against their concentration gradients. The "overshoot" is observed at minimal external Na+ concentration of 100 mM for L-glutamate and 60 mM for L-aspartate; saturation with respect to [Na+] was observed at a concentration near 100 mM for both amino acids. Increasing amino acid concentration, saturation of the uptake rate was observed for L-glutamate and L-aspartate in the concentration range between 1 and 2 mM. Experiments showing mutual inhibition and transtimulation of the two amino acids indicate that the same Na+ -dependent transport system is shared by the two acidic amino acids. The imposition of diffusion potentials across the membrane vesicles artificially induced by addition of valinomycin in the presence of a K+ gradient supports the conclusion that the cotransport Na+/dicarboxylic amino acid in rat brush border membrane vesicles is electroneutral.  相似文献   

10.
Triads and transverse tubules isolated from mammalian skeletal muscle actively accumulated Na+ in the presence of K+ and Mg-ATP. Active Na+ transport exhibited a fast single-exponential phase, lasting 2 min, followed by slower linear uptake that continued for 10 minutes. Valinomycin stimulated Na+ uptake, suggesting it decreased a pump-generated membrane potential gradient (Vm) that prevented further Na+ accumulation. At the end of the fast uptake phase transverse tubule vesicles incubated in 30 mM external [Na+] attained a ratio [Na+]in/[Na+]out=13.4. From this ratio and the transverse tubule volume of 0.35 microl/mg protein measured in this work, [Na+]in=400 mM was calculated. Determinations of active K+ transport in triads, using 86Rb+ as tracer, showed a 30% decrease in vesicular 86Rb+ content two minutes after initiating the reaction, followed by a slower uptake phase during which vesicles regained their initial 86Rb+ content after 10 minutes. Transverse tubule volume increase during active Na+ transport-as shown by light scattering changes of isolated vesicles--presumably accounted for the secondary Na+ and 86Rb+ uptake phases. These combined results indicate that isolated triads have highly sealed transverse tubules that can be polarized effectively by the Na+ pump through the generation of significant Na+ gradients.  相似文献   

11.
The dependence on Na+, K+, and Cl- of uptake and accumulation of [3H]noradrenaline was studied in plasma membrane vesicles isolated from PC-12 pheochromocytoma cells. Plasma membrane vesicles accumulated [3H]noradrenaline when an inward-directed gradient for Na+ and an outward-directed gradient for K+ were imposed across the vesicle membrane. Under these conditions, initial rates of uptake of [3H]noradrenaline were saturable (Km = 0.14 microM) and inhibited by a series of substrates and inhibitors of "uptake". The IC50 values were positively correlated with those for inhibition of uptake into intact PC-12 cells. Uptake and accumulation of [3H]noradrenaline in plasma membrane vesicles were absolutely dependent on external Na+ and Cl-; they were dependent on an inwardly directed gradient for Na+ but less dependent on an inwardly directed gradient for Cl-. Internal K+ strongly enhanced uptake and accumulation of [3H]noradrenaline. Rb+, but not Li+, had the capacity to replace internal K+. Two explanations are proposed for this effect of internal K+: (a) creation of a K+ diffusion potential (inside negative) provides a driving force for inward transport, and/or (b) K+ increases the turnover rate by formation of a highly mobile potassium-carrier complex. A hypothetical scheme for the transport of noradrenaline is presented.  相似文献   

12.
Sinusoidal membrane vesicles from rat liver were employed to study the characteristics of GSH transport. Saturable concentration dependent uptake was best described by the sum of a high and low Km transport. Preloading with GSH markedly stimulated the initial uptake of GSH. GSH transport was electrogenic; uptake was enhanced by an inwardly directed K+ gradient which could be blocked by the K+-channel blocker, Ba2+. The other cations such as Na+, Li+ were poor substitutes for K+. These results therefore show that net GSH transport involves movement of K+.  相似文献   

13.
During growth on low-K+ medium (1 mM K+), Methanobacterium thermoautotrophicum accumulated K+ up to concentration gradients ([K+]intracellular/[K+]extracellular) of 25,000- to 50,000-fold. At these gradients ([K+]extracellular of < 20 microM), growth ceased but could be reinitiated by the addition of K+ or Rb+. During K+ starvation, the levels of a protein with an apparent molecular weight of 31,000 increased about sixfold. The protein was associated with the membrane and could be extracted by detergents. Cell suspensions of M. thermoautotrophicum obtained after K+-limited growth catalyzed the transport of both K+ and Rb+ with apparent Km and Vmax values of 0.13 mM and 140 nmol/min/mg, respectively, for K+ and 3.4 mM and 140 nmol/min/mg, respectively, for Rb+. Rb+ competitively inhibited K+ uptake with an inhibitor constant of about 10 mM. Membranes of K+-starved cells did not exhibit K+-stimulated ATPase activity. Immunoblotting with antisera against Escherichia coli Kdp-ATPase did not reveal any specific cross-reactivity against membrane proteins of K+-starved cells. Cells of M. thermoautotrophicum grown at a high potassium concentration (50 mM) catalyzed K+ and Rb+ transport at similar apparent Km values (0.13 mM for K+ and 3.3 mM for Rb+) but at significantly lower apparent Vmax values (about 60 nmol/min/mg for both K+ and Rb+) compared with K+-starved cells. From these data, it is concluded that the archaeon M. thermoautotrophicum contains a low-affinity K+ uptake system which is overproduced during growth on low-K+ medium.  相似文献   

14.
The transport of taurine into membrane vesicles prepared from neuroblastoma x glioma hybrid cells 108CC5 was studied. A great part of the taurine uptake by the membrane preparation is due to the transport into an osmotically sensitive space of membrane vesicles. Taurine uptake by membrane vesicles is an active transport driven by the concentration gradient of Na+ across the membrane (outside concentration greater than inside). The Km value of 36 microM for Na+-dependent taurine uptake indicates a high-affinity transport system. The rate of taurine transport by the membrane vesicles is enhanced by the K+ gradient (inside concentration greater than outside) and the K+ ionophore valinomycin. Taurine transport is inhibited by several structural analogs of taurine: hypotaurine, beta-alanine, and taurocyamine. All these results indicate that the taurine transport system of the membrane vesicles displays properties almost identical to those of intact neuroblastoma X glioma hybrid cells.  相似文献   

15.
The present study was designed to investigate Cl- transport across rat ileal basolateral membranes. Basolateral membrane vesicles were prepared by a well-validated technique. The purity of the basolateral membrane vesicles was verified by marker enzyme studies and by studies of d-glucose and calcium uptake. Cl- uptake was studied by a rapid filtration technique. Neither an outwardly directed pH gradient, nor a HCO3- gradient, or their combination could elicit any stimulation of Cl- transport when compared with no gradient. 4,4-Diisothiocyanostilbene-2,2-disulfonic acid at 5 mM concentration did not inhibit Cl- uptake under gradient condition. Similarly, the presence of the combination of outwardly directed Na+ and HCO3- gradients did not stimulate Cl- uptake compared with the combination of K+ and HCO3- gradients or no HCO3- gradient. This is in contrast to our results in the brush border membranes, where an outwardly directed pH gradient caused an increase in Cl- uptake. Cl- uptake was stimulated in the presence of combined Na+ and K+ gradient. Bumetanide at 0.1 mM concentration inhibited the initial rate of Cl- uptake in the presence of combined Na+ and K+ gradients. Kinetic studies of bumetanide-sensitive Cl- uptake showed a Vmax of 5.6 +/- 0.7 nmol/mg protein/5 sec and a Km of 30 +/- 8.7 mM. Cl- uptake was stimulated by an inside positive membrane potential induced by the ionophore valinomycin in the setting of inwardly directed K+ gradient compared with voltage clamp condition. These studies demonstrate two processes for Cl- transport across the rat ileal basolateral membrane: one is driven by an electrogenic diffusive process and the second is a bumetanide-sensitive Na+/K+/2 Cl- process. Cl- uptake is not enhanced by pH gradient, HCO3- gradient, their combination, or outwardly directed HCO3- and Na+ gradients.  相似文献   

16.
The Na+/L-glutamate (L-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl-. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl- could specifically activate the Na+-dependent L-glutamate (L-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl- was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. L-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl- did not show any translocation of net charge.  相似文献   

17.
1. The fluorescent intensity of the dye 3,3'-dipropylthiodicarbocyanine iodide was measured in suspensions of Ehrlich ascites tumor cells in an attempt to monitor their membrane potentials under a variety of different ionic and metabolic conditions. 2. In the presence of valinomycin, fluorescent intensity is dependent on log [K+]medium (the fluorescent intensity increased with increasing [K+]medium) where K+ replaced Na+ in the medium. Cellular K+ content also influenced fluorescent intensity in the presence of valinomycin. With lower cellular K+, fluorescent intensity in the presence of valinomycin for any given concentration was increased. 3. In the presence of gramicidin fluorescent intensity was highest in Krebs-Ringer and decreased with the substitution of choline+ for Na+. 4. The observations with ionophores are consistent with the hypothesis that the dye monitors membrane potential in these cells with an increase in fluorescence indicating membrane depolarization (internal becomes more positive). 5. The estimated membrane potentials were influenced by the way in which the cells were treated. Upon dilution of the cells from 1 in 20 to 1 in 300 the initial estimations were between -50 and -60 mV. With incubation at 1 in 300 dilution for 1 h at room temperature or a 37 degrees C, the membrane potentials ranged from -18 to -42 mV. 6. Estimations of membrane potential on the basis of chloride distribution (Cl-cell/Cl-medium) in equilibrated cells ranged from -13 to -32 mV. 7. Addition of glucose to cells equilibrated at 37 degrees C for 30 min in the presence of rotenone led to a decrease in fluorescent intensity indicating hyperpolarization. Addition of ouabain in turn led to a 70 to 100% reversal of fluorescent intensity. This hyperpolarization is therefore probably due to the electrogenic activity of the sodium pump. 8. The addition of amino acids known to require external Na+ for transport increased fluorescent intensity (depolarization) reaching a maximum at higher concentrations of amino acids. Plots of 1/deltafluorescence vs. 1/[glycine] were linear with an apparent Km of 2-3 mM. The increase in fluorescence with amino acids always required external Na+. Plots of 1/fluorescence vs. 1/[Na+]medium were also linear with an apparent Km of 29 mM. These apparent Km values compare favorably with those derived from amino acid transport studies using tracers. These data indicate that the Na+-dependent transport of amino acids in these cells is electrogenic.  相似文献   

18.
In previous studies it was shown that hepatocellular uptake of fatty acids is mediated by a specific fatty acid binding membrane protein. To determine now directly the driving forces for their entry into hepatocytes, the uptake of a representative long chain fatty acid, [3H]oleate, by basolateral rat liver plasma membrane vesicles was examined. Influx of oleate was stimulated by increasing the Na+ concentration of the medium. In the presence of an inwardly directed Na+ gradient (NaSCN, NaNO3, NaCl) oleate was accumulated during the initial uptake phase (20 s) at a concentration of 1.4-1.9-fold that at equilibrium (overshoot). This activation of influx was not observed after replacement of Na+ by Li+, K+, or choline+. Na+-dependent oleate uptake was significantly stimulated by creation of a negative intravesicular potential, either by altering the accompanying anions or by valinomycin-induced K+ diffusion potentials, suggesting an electrogenic transport mechanism. Na+-dependent fatty acid uptake was temperature dependent, with maximal overshoots occurring at 37 degrees C, and revealed saturation kinetics with a Km of 83.1 nM and Vmax of 2.9 nmol X min-1 X mg protein-1. These studies demonstrate that the carrier-mediated hepatocellular uptake of fatty acids represents an active potential-sensitive Na+-fatty acid cotransport system.  相似文献   

19.
Recent studies suggest that the major pathway for exit of HCO3- across the basolateral membrane of the proximal tubule cell is electrogenic Na+/HCO3- co-transport. We therefore evaluated the possible presence of Na+/HCO3- co-transport in basolateral membrane vesicles isolated from the rabbit renal cortex. Imposing an inward HCO3- gradient induced the transient uphill accumulation of Na+, and imposing an outward Na+ gradient caused HCO3- -dependent generation of an inside-acid pH gradient as monitored by quenching of acridine orange fluorescence, findings consistent with the presence of Na+/HCO3- co-transport. In the absence of other driving forces, generating an inside-positive membrane potential by imposing an inward K+ gradient in the presence of valinomycin caused net Na+ uptake via a HCO3- -dependent pathway, indicating that Na+/HCO3- co-transport is electrogenic and associated with a flow of negative charge. Imposing transmembrane Cl- gradients did not appreciably affect HCO3- gradient-stimulated Na+ influx, suggesting that Na+/HCO3- co-transport is not Cl- -dependent. The rate of HCO3- gradient-stimulated Na+ influx was a simple, saturable function of the Na+ concentration (Km = 9.7 mM, Vmax = 160 nmol/min/mg of protein), was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (I50 = 100 microM), but was inhibited less than 10% by up to 1 mM amiloride. We could not demonstrate a HCO3- -dependent or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive component of Na+ influx in microvillus membrane vesicles. This study thus indicates the presence of a transport system mediating electrogenic Na+/HCO3- co-transport in basolateral, but not luminal, membrane vesicles isolated from the rabbit renal cortex. Analogous to the use of renal microvillus membrane vesicles to study Na+/H+ exchange, renal basolateral membrane vesicles may be a useful model system for examining the kinetics and possible regulation of Na+/HCO3- co-transport.  相似文献   

20.
Uptake of 22Na+ by liver plasma membrane vesicles, reflecting Na+ transport by (Na+, K+)ATPase or Na+/H+ exchange was studied. Membrane vesicles were isolated from rat liver homogenates or from freshly prepared rat hepatocytes incubated in the presence of [Arg8]vasopressin or pervanadate and insulin. The ATP dependence of (Na+, K+)ATPase-mediated transport was determined from initial velocities of vanadate-sensitive uptake of 22Na+, the Na(+)-dependence of Na+/H+ exchange from initial velocities of amiloride-sensitive uptake. By studying vanadate-sensitive Na+ transport, high-affinity binding sites for ATP with an apparent Km(ATP) of 15 +/- 1 microM were observed at low concentrations of Na+ (1 mM) and K+ (1mM). At 90 mM Na+ and 60 mM K+ the apparent Km(ATP) was 103 +/- 25 microM. Vesiculation of membranes and loading of the vesicles prepared from liver homogenates in the presence of vasopressin increased the maximal velocities of vanadate-sensitive transport by 3.8-fold and 1.9-fold in the presence of low and high concentrations of Na+ and K+, respectively. The apparent Km(ATP) was shifted to 62 +/- 7 microM and 76 +/- 10 microM by vasopressin at low and high ion concentrations, respectively, indicating that the hormone reduced the influence of Na+ and K+ on ATP binding. In vesicles isolated from hepatocytes preincubated with 10 nM vasopression the hormone effect was conserved. Initial velocities of Na+ uptake (at high ion concentrations and 1 mM ATP) were increased 1.6-1.7-fold above control, after incubation of the cells with vasopressin or by affinity labelling of the cells with a photoreactive analogue of the hormone. The velocity of amiloride-sensitive Na+ transport was enhanced by incubating hepatocytes in the presence of 10 nM insulin (1.6-fold) or 0.3 mM pervanadate generated by mixing vanadate plus H2O2 (13-fold). The apparent Km(Na+) of Na+/H+ exchange was increased by pervanadate from 5.9 mM to 17.2 mM. Vesiculation and incubation of isolated membranes in the presence of pervanadate had no effect on the velocity of amiloride-sensitive Na+ transport. The results show that hormone receptor-mediated effects on (Na+, K+)ATPase and Na+/H+ exchange are conserved during the isolation of liver plasma membrane vesicles. Stable modifications of the transport systems or their membrane environment rather than ionic or metabolic responses requiring cell integrity appear to be involved in this regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号