首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolutionary paradox of sex remains one of the major debates in evolutionary biology. The study of species capable of both sexual and asexual reproduction can elucidate factors important in the evolution of sex. One such species is the ant Cataglyphis cursor, where the queen maximizes the transmission of her genes by producing new queens (gynes) asexually while simultaneously maintaining a genetically diverse workforce via the sexual production of workers. We show that the queen can also produce gynes sexually and may do so to offset the costs of asexual reproduction. We genotyped 235 gynes from 18 colonies and found that half were sexually produced. A few colonies contained both sexually and asexually produced gynes. Although workers in this species can also use thelytoky, we found no evidence of worker production of gynes based on genotypes of 471 workers from the six colonies producing sexual gynes. Gynes are thus mainly, and potentially exclusively, produced by the queen. Simulations of gynes inbreeding level following one to ten generations of automictic thelytoky suggest that the queen switches between or combines thelytoky and sex, which may reduce the costs of inbreeding. This is supported by the relatively small size of inbred gynes in one colony, although we found no relationship between the level of inbreeding and immune parameters. Such facultative use of sex and thelytoky by individual queens contrasts with other known forms of parthenogenesis in ants, which are typically characterized by distinct lineages specializing in one strategy or the other.  相似文献   

2.
In most social insects, the brood is totipotent and environmental factors determine whether a female egg will develop into a reproductive queen or a functionally sterile worker. However, genetic factors have been shown to affect the female's caste fate in a few ant species. The desert ant Cataglyphis hispanica reproduces by social hybridogenesis. All populations are characterized by the coexistence of two distinct genetic lineages. Queens are almost always found mated with a male of the alternate lineage than their own. Workers develop from hybrid crosses between the genetic lineages, whereas daughter queens are produced asexually via parthenogenesis. Here, we show that the association between genotype and caste in this species is maintained by a ‘hard‐wired’ genetic caste determination system, whereby nonhybrid genomes have lost the ability to develop as workers. Genetic analyses reveal that, in a rare population with multiple‐queen colonies, a significant proportion of nestmate queens are mated with males of their own lineage. These queens fail to produce worker offspring; they produce only purebred daughter queens by sexual reproduction. We discuss how the production of reproductive queens through sexual, intralineage crosses may favour the stability of social hybridogenesis in this species.  相似文献   

3.
Cheating honeybee workers produce royal offspring   总被引:6,自引:0,他引:6  
The Cape bee (Apis mellifera capensis) is unique among honeybees in that workers can lay eggs that instead of developing into males develop into females via thelytokous parthenogenesis. We show that this ability allows workers to compete directly with the queen over the production of new queens. Genetic analyses using microsatellites revealed that 23 out of 39 new queens produced by seven colonies were offspring of workers and not the resident queen. Of these, eight were laid by resident workers, but the majority were offspring of parasitic workers from other colonies. The parasites were derived from several clonal lineages that entered the colonies and successfully targeted queen cells for parasitism. Hence, these parasitic workers had the potential to become genetically reincarnated as queens. Of the daughter queens laid by the resident queen, three were produced asexually, suggesting that queens can 'choose' to produce daughter queens clonally and thus have the potential for genetic immortality.  相似文献   

4.
Worker honeybees (Apis mellifera) usually only lay eggs when their colony is queenless. However, an extremely rare ''anarchistic'' phenotype occurs, in which workers develop functional ovaries and lay large numbers of haploid eggs which develop into adult drones despite the presence of the queen. Studies of such colonies can give important insights into the mechanisms by which worker sterility is maintained in normal colonies. Here we report on the results of a breeding programme which enhanced the frequency of the anarchistic phenotype. Colonies derived from queens inseminated only by worker-laid males showed up to 9% of workers with highly developed ovaries. In these colonies a large proportion of males arose from worker-laid eggs. Colonies headed by queens inseminated with 50% worker-laid drones and 50% queen-laid drones showed variable phenotypes. In most such colonies there was no worker reproduction. In some, many workers had highly developed ovaries, but no worker-laid eggs were reared. In one colony, many worker-laid eggs were reared to maturity. The results suggest that the anarchy phenotype results from a complex interaction of queen genotype, the worker genotype of subfamilies that successfully reproduce and of those that do not, and the external environment.  相似文献   

5.
The presence of the honey bee queen reduces worker ovary activation. When the queen is healthy and fecund, this is interpreted as an adaptive response as workers can gain fitness from helping the queen raise additional offspring, their sisters. However, when the queen is absent, workers activate their ovaries and lay unfertilized eggs that become males. Queen pheromones are recognised as a factor affecting worker ovary activation. Recent work has shown that queen mandibular pheromone composition changes with queen mating condition and workers show different behavioural responses to pheromone extracts from these queens. Here, we tested whether workers reared in colonies with queens of different mating condition varied in level of ovary activation. We also examined the changes in the chemical composition of the queen mandibular glands to determine if the pheromone blend varied among the queens. We found that the workers activated their ovaries when queens were unmated and had lower ovary activation when raised with mated queens, suggesting that workers detect and respond adaptively to queens of differing mating status. Moreover, variation in queen mandibular gland’s chemical composition correlated with the levels of worker ovary activation. Although correlative, this evidence suggests that queen pheromone may act as a signal of queen mating condition for workers, in response to which they alter their level of ovary activation.  相似文献   

6.
Reproduction by workers is rare in honey bee colonies that have an active queen. By not producing their own offspring and preventing other workers from producing theirs, workers are thought to increase their inclusive fitness due to their higher average relatedness towards queen-produced male offspring compared with worker-produced male offspring. But there is one exception. Workers of the Cape honey bee, Apis mellifera capensis, are able to produce diploid female offspring via thelytokous parthenogenesis and thus produce clones of themselves. As a result, worker reproduction and tolerance towards worker-produced offspring is expected to be more permissive than in arrhenotokous (sub)species where worker offspring are male. Here we quantify the extent to which A. m. capensis workers contribute to reproduction in queenright colonies using microsatellite analyses of pre-emergent brood. We show that workers produced 10.5% of workers and 0.48% of drones. Most of the workers' contribution towards the production of new workers coincided with the colonies producing new queens during reproductive swarming.  相似文献   

7.
Worker reproduction and related behavior in 2 orphan colonies ofPolistes jadwigae, one of which had been maintained by a queen and 5 artificially introduced alien workers, were observed. After the queen loss, a dominance hierarchy was established among workers, and several workers laid eggs without physical interference from other workers. Only males emerged from worker-laid eggs, however, a few new queens were produced from queen-laid eggs. Investment sex ratio of queenright (=normal) colonies (0.27) fell between the 2 theoretical values, corresponding to worker control (0.20 or 0.18) and queen control (0.48 or 0.46) of the sex ratio, both being calculated by considering the excess of males produced in the orphan colonies.  相似文献   

8.
We estimated queen mating frequency, genetic relatedness among workers, and worker reproduction in Vespa crabro flavofasciata using microsatellite DNA markers. Of 20 colonies examined, 15 contained queens inseminated by a single male, 3 colonies contained queens inseminated by two males, and 2 colonies contained queens inseminated by three males. The genetic relatedness among workers was estimated to be 0.73±0.003 (mean±SE). For this high relatedness, kin selection theory predicts a potential conflict between queens and workers over male production. To verify whether males are derived from queens or workers, 260 males from 13 colonies were genotyped at four microsatellite loci. We found that all of the males were derived from the queens. This finding was further supported by the fact that only 33 of 2,990 workers dissected had developed ovaries. These workers belonged to 2 of the 20 colonies. There was no relationship between queen mating frequency and worker reproduction, and no workers produced male offspring in any of the colonies. These results suggest that male production dominated by queens in V. crabro flavofasciata is possibly due to worker policing.  相似文献   

9.
Sib matings increase homozygosity and, hence, the frequency of detrimental phenotypes caused by recessive deleterious alleles. However, many species have evolved adaptations that prevent the genetic costs associated with inbreeding. We discovered that the highly invasive longhorn crazy ant, Paratrechina longicornis, has evolved an unusual mode of reproduction whereby sib mating does not result in inbreeding. A population genetic study of P. longicornis revealed dramatic differences in allele frequencies between queens, males and workers. Mother-offspring analyses demonstrated that these allele frequency differences resulted from the fact that the three castes were all produced through different means. Workers developed through normal sexual reproduction between queens and males. However, queens were produced clonally and, thus, were genetically identical to their mothers. In contrast, males never inherited maternal alleles and were genetically identical to their fathers. The outcome of this system is that genetic inbreeding is impossible because queen and male genomes remain completely separate. Moreover, the sexually produced worker offspring retain the same genotype, combining alleles from both the maternal and paternal lineage over generations. Thus, queens may mate with their brothers in the parental nest, yet their offspring are no more homozygous than if the queen mated with a male randomly chosen from the population. The complete segregation of the male and female gene pools allows the queens to circumvent the costs associated with inbreeding and therefore may act as an important pre-adaptation for the crazy ant's tremendous invasive success.  相似文献   

10.
Conflict is rare among the members of a highly cooperative society such as a honey bee colony. However, conflict within a colony increases drastically during colony reproduction ('swarming') when newly produced queens fight each other until only one queen remains in the nest. This study describes the behavior of queens and workers during naturally occurring queen combat. The duels of five pairs of queens were observed in three observation colonies. A typical duel is described qualitatively and the events of all five duels are described quantitatively. Several aspects of duels that are of particular interest are examined in detail, including the behavior of queens near capped queen cells, worker aggression toward queens, queen tooting, and the relation of queen and worker behavior to the outcome of the duel. The results of this investigation serve as a foundation for rigorous tests of hypotheses regarding the adaptive significance of queen and worker behavior during queen combat. The results presented suggest that: young queens patrol queen cells to kill rival queens while they are vulnerable; workers aggress queens to prevent them from destroying queen cells; queens toot to inhibit worker aggression; workers immobilize queens to make them easy targets for rival queens; and queens eject hind-gut contents to cause their rival to be immobilized by the workers.  相似文献   

11.
Kin selection theory predicts potential conflict between queen and workers over male parentage in hymenopteran societies headed by one, singly mated queen, because each party is more closely related to its own male offspring. In ‘late-switching’ colonies of the bumblebee Bombus terrestris, i.e. colonies whose queens lay haploid eggs relatively late in the colony cycle, workers start to lay male eggs shortly after the queen lays the female eggs that will develop into new queens. It has been hypothesized that this occurs because workers recognize, via a signal given by the queen instructing female larvae to commence development as queens, that egg laying is now in their kin-selected interest. This hypothesis assumes that aggressive behaviour in egg-laying workers does not substantially reduce the production of new queens, which would decrease the workers' fitness payoff from producing males. We tested the hypothesis that reproductive activity inB. terrestris workers does not reduce the production of new queens. We used microsatellite genotyping to sex eggs and hence to select eight size-matched pairs of ‘late-switching’ colonies from a set of commercial colonies. From one colony of each pair we removed every egg-laying or aggressive worker observed. From the other colony, we simultaneously removed a nonegg-laying, nonaggressive worker. Removed workers were replaced with young workers from separate colonies at equal frequencies within the pair. There was no significant difference in queen productivity between colonies with reduced or normal levels of egg-laying or aggressive workers. Therefore, as predicted, reproductive B. terrestris workers did not significantly reduce the production of new queens.  相似文献   

12.
Egg marking pheromones of anarchistic worker honeybees (Apis mellifera)   总被引:2,自引:0,他引:2  
In honeybees, worker policing via egg eating enforces functionalworker sterility in colonies with a queen and brood. It is thoughtthat queens mark their eggs with a chemical signal, indicatingthat their eggs are queen-laid. Worker-laid eggs lack this signaland are, therefore, eaten by policing workers. Anarchistic workerhoneybees have been hypothesized to circumvent worker policingby mimicking the queen egg-marking signal. We investigated thisphenomenon by relating chemical profiles of workers and theireggs to egg acceptability. We found that the ability of someworkers (anarchistic workers in queenright colonies and deviantworkers from a queenless colony) to lay more acceptable eggsis due to them producing significant amounts of queen-like estersfrom their Dufour's gland. These esters appear to be transferredto eggs during laying and increase egg survival. However, theseesters cannot be the normal queen egg-marking signal, as theyare generally absent from queen-laid eggs and only increasethe short-term persistence of worker-laid eggs, because only7–30% of anarchistic worker-laid eggs persisted to hatchingversus 91–92% of queen-laid eggs. All workers can producesome esters, but only workers that greatly increase their esterproduction lay more acceptable eggs. The production of estersappears to be a flexible response, as anarchistic workers rearedin queenless colonies did not increase their ester production,while some deviant workers in queenless colonies did increasetheir ester production.  相似文献   

13.
Pearcy M  Hardy O  Aron S 《Heredity》2006,96(5):377-382
Thelytokous parthenogenesis, that is, the production of diploid daughters from unfertilized eggs, may involve various cytological mechanisms, each having a different impact on the genetic structure of populations. Here, we determined the cytological mechanism of thelytokous parthenogenesis and its impact on inbreeding in the ant Cataglyphis cursor, a species where queens use both sexual and asexual reproduction to produce, respectively, workers and new queens. It has been suggested that thelytokous parthenogenesis in C. cursor might have been selected for to face high queen mortality and, originally, to allow workers to replace the queen when she passes away. We first determined the mode of thelytokous parthenogenesis by comparing the rate of transition to homozygosity at four highly polymorphic loci to expectations under the different modes of parthenogenesis. Our data show that thelytoky is achieved through automictic parthenogenesis with central fusion. We then estimated the proportion of colonies headed by worker-produced queens in a natural population. We designed a model linking the observed homozygosity in queens to the proportion of queens produced by workers, based on the assumption that (i) parthenogenesis is automictic with central fusion and (ii) queen lineage is asexually produced, resulting in an increase of the inbreeding over generations, whereas workers are sexually produced and therefore not inbred. Our results indicate that more than 60% of the colonies should be headed by a worker-produced queen, suggesting that queen's lifespan is low in this species.  相似文献   

14.
In insect societies, eggs laid by workers are frequently killed by other workers – a behaviour known as “worker policing”. The traditional explanation of worker policing is that it is a mechanism to resolve intracolony conflict, and maintain the reproductive monopoly of the queen. Recently, Pirk et al. (2004) proposed that worker policing instead is aimed at removing unviable worker-laid eggs and is ultimately just another example of hygienic behaviour. Here we test this hypothesis for the common wasp Vespula vulgaris, a species with highly effective worker policing. We show that worker-laid eggs from queenless colonies have a lower hatch rate (68%) than queen-laid eggs (82%). Analysis of egg laying rates of queens and workers, however, shows that the difference is not big enough to explain the apparent absence of adult worker-derived males in this species. Received 30 January 2006; revised 2 May 2006; accepted 5 May 2006.  相似文献   

15.
In honeybee colonies, reproduction is monopolized by the queen while her daughter workers are facultatively sterile. Caste determination is a consequence of environmental conditions during development, during which female larvae may become either queens or workers depending on their larval diet. This bipotency introduces significant variation in the reproductive potential of queen bees, with queens raised from young worker larvae exhibiting high reproductive potential and queens raised from older worker larvae exhibiting lower reproductive potential. We verify that low-quality queens are indeed produced from older worker larvae, as measured morphometrically (e.g., body size) and by stored sperm counts. We also show, for the first time, that low-quality queens mate with significantly fewer males, which significantly influences the resultant intracolony genetic diversity of the worker force of their future colonies. These results demonstrate a reproductive continuum of honeybee queens and provide insights into the reproductive constraints of social insects.  相似文献   

16.
Social Hymenoptera are characterized by a reproductive division of labor, whereby queens perform most of the reproduction and workers help to raise her offspring. A long‐lasting debate is whether queens maintain this reproductive dominance by manipulating their daughter workers into remaining sterile (queen control), or if instead queens honestly signal their fertility and workers reproduce according to their own evolutionary incentives (queen signaling). Here, we test these competing hypotheses using data from Vespine wasps. We show that in natural colonies of the Saxon wasp, Dolichovespula saxonica, queens emit reliable chemical cues of their true fertility and that these putative queen signals decrease as the colony develops and worker reproduction increases. Moreover, these putative pheromones of D. saxonica show significant conservation with those of Vespula vulgaris and other Vespinae, thereby arguing against fast evolution of signals as a result of a queen–worker arms race ensuing from queen control. Lastly, levels of worker reproduction in these species correspond well with their average colony kin structures, as predicted by the queen signaling hypothesis but not the queen control hypothesis. Altogether, this correlative yet comprehensive analysis provides compelling evidence that honest signaling explains levels of reproductive division of labor in social wasps.  相似文献   

17.
The little fire ant, Wasmannia auropunctata, displays a peculiar breeding system polymorphism. Classical haplo-diploid sexual reproduction between reproductive individuals occurs in some populations, whereas, in others, queens and males reproduce clonally. Workers are produced sexually and are sterile in both clonal and sexual populations. The evolutionary fate of the clonal lineages depends strongly on the underlying mechanisms allowing reproductive individuals to transmit their genomes to subsequent generations. We used several queen-offspring data sets to estimate the rate of transition from heterozygosity to homozygosity associated with recombination events at 33 microsatellite loci in thelytokous parthenogenetic queen lineages and compared these rates with theoretical expectations under various parthenogenesis mechanisms. We then used sexually produced worker families to define linkage groups for these 33 loci and to compare meiotic recombination rates in sexual and parthenogenetic queens. Our results demonstrate that queens from clonal populations reproduce by automictic parthenogenesis with central fusion. These same parthenogenetic queens produce normally segregating meiotic oocytes for workers, which display much lower rates of recombination (by a factor of 45) than workers produced by sexual queens. These low recombination rates also concern the parthenogenetic production of queen offspring, as indicated by the very low rates of transition from heterozygosity to homozygosity observed (from 0% to 2.8%). We suggest that the combination of automixis with central fusion and a major decrease in recombination rates allows clonal queens to benefit from thelytoky while avoiding the potential inbreeding depression resulting from the loss of heterozygosity during automixis. In sterile workers, the strong decrease of recombination rates may also facilitate the conservation over time of some coadapted allelic interactions within chromosomes that might confer an adaptive advantage in habitats disturbed by human activity, where clonal populations of W. auropunctata are mostly found.  相似文献   

18.
Studies on sex ratios in social insects provide among the most compelling evidence for the importance of kin selection in social evolution. The elegant synthesis of Fisher's sex ratio principle and Hamilton's inclusive fitness theory predicts that colony-level sex ratios vary with the colonies' social and genetic structures. Numerous empirical studies in ants, bees, and wasps have corroborated these predictions. However, the evolutionary optimization of sex ratios requires genetic variation, but one fundamental determinant of sex ratios - the propensity of female larvae to develop into young queens or workers ("queen bias") - is thought to be largely controlled by the environment. Evidence for a genetic influence on sex ratio and queen bias is as yet restricted to a few taxa, in particular hybrids. Because of the very short lifetime of their queens, ants of the genus Cardiocondyla are ideal model systems for the study of complete lifetime reproductive success, queen bias, and sex ratios. We found that lifetime sex ratios of the ant Cardiocondyla kagutsuchi have a heritable component. In experimental single-queen colonies, 22 queens from a genetic lineage with a highly female-biased sex ratio produced significantly more female-biased offspring sex ratios than 16 queens from a lineage with a more male-biased sex ratio (median 91.5% vs. 58.5% female sexuals). Sex ratio variation resulted from different likelihood of female larvae developing into sexuals (median 50% vs. 22.6% female sexuals) even when uniformly nursed by workers from another colony. Consistent differences in lifetime sex ratios and queen bias among queens of C. kagutsuchi suggest that heritable, genetic or maternal effects strongly affect caste determination. Such variation might provide the basis for adaptive evolution of queen and worker strategies, though it momentarily constrains the power of workers and queens to optimize caste ratios.  相似文献   

19.
We studied the kin conflict over male parentage in the ant Formica fusca. The conflict arises because each worker and queen is most related to her own sons and is thus predicted to lay eggs. Microsatellite analysis of eggs revealed that workers laid eggs in more than half the queenright experimental nests. Nevertheless, almost exclusively diploid offspring were reared in the presence of a queen. This also occurred when worker-laid haploid male eggs were experimentally introduced in to the nests. Because our experimental setup allowed us to exclude the possibility of queen policing, we conclude that worker laid eggs are removed by other workers, either as a response to their parentage or gender. Our results suggest that worker reproduction in F. fusca is ultimately an interplay of conflicts over male parentage and sex allocation and that both worker and self policing have roles as proximate mechanisms of resolution.  相似文献   

20.
Abstract. 1. In eusocial insects, colony fission is a mode of dispersal by which a young queen leaves her nest with some workers to found a new colony. In these species, adult females (workers and the queen) should allocate most resources to increasing their colony size, which constrains the possibility of fission. In contrast, developing diploid larvae should have a preference for becoming a queen and having their own offspring, rather than becoming workers and rearing the offspring of other females. 2. In the ant Aphaenogaster senilis, queens are produced in very small numbers, suggesting that adult females control larval development. We used a 6‐year series of data on more than 300 nests to determine the annual cycle of worker and queen production. Although both overlapped, the latter mostly occurred in the second half of the summer, after a major peak of worker emergence. Young queens were also often produced in nests whose reproductive queen had died, thus allowing her replacement. Overall, we estimate that only 0.07% of diploid larvae actually develop into gynes. 3. Laboratory experiments indicated that brood is bipotent until the second larval instar. Diploid larval development into queen was favoured by the removal of the mother queen, but was not affected by rearing temperature. 4. Our data suggest that most diploid broods are forced by the adults to develop into workers rather than into gynes. However, when the queen is not present due to death or after a fission event, a few larvae are allowed to develop into gynes. One way for workers to limit the development of larvae might be by controlling the amount of food they receive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号