首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The perfused rat liver responds in several ways to NAD+ infusion (20–100 μM). Increases in portal perfusion pressure and glycogenolysis and transient inhibition of oxygen consumption and gluconeogenesis are some of the effects that were observed. Extracellular NAD+ is also extensively transformed in the liver. The purpose of the present work was to determine the main products of extracellular NAD+ transformation under various conditions and to investigate the possible contribution of these products for the metabolic effects of the parent compound. The experiments were done with the isolated perfused rat liver. The NAD+ transformation was monitored by HPLC. Confirming previous findings, the single-pass transformation of 100 μM NAD+ ranged between 75% at 1.5 min after starting infusion to 95% at 8 min. The most important products of single-pass NAD+ transformation appearing in the outflowing perfusate were nicotinamide, ADP-ribose, uric acid, and inosine. The relative proportions of these products presented some variations with the time after initiation of NAD+ infusion and the perfusion conditions, but ADP-ribose was always more abundant than uric acid and inosine. Cyclic ADP-ribose (cADP-ribose) as well as adenosine were not detected in the outflowing perfusate. The metabolic effects of ADP-ribose were essentially those already described for NAD+. These effects were sensitive to suramin (P2XY purinergic receptor antagonist) and insensitive to 3,7-dimethyl-1-(2-propargyl)-xanthine (A2 purinergic receptor antagonist). Inosine, a known purinergic A3 agonist, was also active on metabolism, but uric acid and nicotinamide were inactive. It was concluded that the metabolic and hemodynamic effects of extracellular NAD+ are caused mainly by interactions with purinergic receptors with a highly significant participation of its main transformation product ADP-ribose.  相似文献   

2.
The perfused rat liver responds intensely to NAD+ infusion (20-100 microM). Increases in portal perfusion pressure and glycogenolysis and transient inhibition of oxygen consumption are some of the effects that were observed. The aim of the present work was to investigate the distribution of the response to extracellular NAD+ along the hepatic acinus. The bivascularly perfused rat liver was used. Various combinations of perfusion directions (antegrade and retrograde) and infusion routes (portal vein, hepatic vein and hepatic artery) were used in order to supply NAD+ to different regions of the liver parenchyma, also taking advantage of the fact that its extracellular transformation generates steep concentration gradients. Oxygen uptake was stimulated by NAD+ in retrograde perfusion (irrespective of the infusion route) and transiently inhibited in antegrade perfusion. This indicates that the signal causing oxygen uptake inhibition is generated in the periportal area. The signal responsible for oxygen uptake stimulation is homogenously distributed. Stimulation of glucose release was more intense when NAD+ was infused into the portal vein or into the hepatic artery, indicating that stimulation of glycogenolysis predominates in the periportal area. The increases in perfusion pressure were more pronounced when the periportal area was supplied with NAD+ suggesting that the vasoconstrictive elements responding to NAD+ predominate in this region. The response to extracellular NAD+ is thus unequally distributed in the liver. As a paracrine agent, NAD+ is likely to be released locally. It can be concluded that its effects will be different depending on the area where it is released.  相似文献   

3.
The zonation of the purinergic action of ATP in the hepatic parenchyma was investigated in the bivascularly perfused rat liver by means of anterograde and retrograde perfusion. Livers from fed rats were used, and ATP was infused according to four different experimental protocols: (A) anterograde perfusion and ATP infusion via the portal vein; (B) anterograde perfusion and ATP via the hepatic artery; (C) retrograde perfusion and ATP via the hepatic vein; (D) retrograde perfusion and ATP via the hepatic artery. The following metabolic parameters were measured: glucose release, lactate production and oxygen consumption. The hemodynamic effects were evaluated by measuring the sinusoidal mean transit times by means of the indicator-dilution technique. ATP was infused during 20 min at four different rates (between 0.06-0.77 µmol min-1 g liver-1; 20-200 µM) in each of the four experimental protocols.The results that were obtained allow several conclusions with respect to the localization of the effects of ATP along the hepatic acini: (1) In retrograde perfusion the sinusoidal mean transit times were approximately twice those observed in anterograde perfusion. ATP increased the sinusoidal mean transit times only in retrograde perfusion (protocols C and D). The effect was more pronounced with protocol D. These results allow the conclusion that the responsive vasoconstrictive elements are localized in a pre-sinusoidal region; (2) All hepatic cells, periportal as well as perivenous, were able to metabolize ATP, so that concentration gradients were generated with all experimental protocols. Extraction of ATP was more pronounced in retrograde perfusion, an observation that can be attributed, partly at least, to the longer sinusoidal transit times. In anterograde perfusion, the extraction of ATP was time-dependent, a phenomenon that cannot be satisfactorily explained with the available data; (3) ATP produced a transient initial inhibition of oxygen uptake when protocols A and B were employed. These protocols are the only ones in which the cells situated shortly after the intrasinusoidal confluence of the portal vein and the hepatic artery were effectively supplied with ATP. The decrease in oxygen consumption was more pronounced at low ATP infusions when protocol B was employed. These observations allow the conclusion that the former phenomenon is localized mainly in cells situated shortly after the intrasinusoidal confluence of the portal vein and hepatic artery. Oxygen consumption in all other cells, especially the proximal periportal ones, is increased by ATP; (4) In agreement with previous data found in the literature, glycogenolysis stimulation by ATP was more pronounced in the periportal region. The cells that respond more intensively are not the proximal periportal ones, but those situated in the region of the intrasinusoidal confluence of the portal vein and the hepatic artery.  相似文献   

4.
Zonation of ethanol oxidation and metabolic effects along the hepatic acini were investigated in the bivascularly perfused liver of fed rats. Ethanol was infused into the hepatic artery in antegrade and retrograde perfusion. Inhibition of glycolysis by ethanol, expressed as micromol min(-1) (ml accessible cell space)(-1), was more pronounced in the retrograde mode; the retrograde/antegrade ratio was equal to 1.63 for an ethanol infusion rate of 37.5 micromol min(-1) g(-1). Stimulation of oxygen uptake by ethanol was more pronounced in the retrograde mode; the retrograde/antegrade ratio was equal to 1.77. Diminution of the citrate cycle caused by ethanol was more pronounced in the retrograde mode; the retrograde/antegrade ratio was equal to 1.46. Transformation of arterially infused ethanol into acetate was more pronounced in retrograde perfusion; the retrograde/antegrade ratio was equal to 1.63. The increments in glucose release (glycogenolysis) caused by ethanol in the antegrade and retrograde modes were similar. It was assumed that the changes caused by arterially infused ethanol in retrograde and antegrade perfusion closely reflect a significant part of the periportal parenchyma and an average over the whole liver parenchyma, respectively. Under such assumptions it can be concluded that, in the perfused liver from fed rats, four related parameters predominate in the periportal region: ethanol oxidation, glycolysis inhibition, oxygen uptake stimulation and citrate cycle inhibition. One of the main causes for this predominance could be the malate/aspartate shuttle, which operates more rapidly in the periportal area and is essential for NADH oxidation.  相似文献   

5.
Citrus aurantium extracts, which contain large amounts of p-synephrine, are widely used for weight loss purposes and as appetite suppressants. In the liver, C. aurantium (bitter orange) extracts affect hemodynamics, carbohydrate metabolism, and oxygen uptake. The purpose of the present work was to quantify the action of p-synephrine and also to obtain indications about its mechanism of action, a task that would be difficult to accomplish with C. aurantium extracts due to their rather complex composition. The experimental system was the isolated perfused rat liver. p-Synephrine significantly stimulated glycogenolysis, glycolysis, gluconeogenesis, and oxygen uptake. The compound also increased the portal perfusion pressure and the redox state of the cytosolic NAD+/NADH couple. A Ca2+-dependency for both the hemodynamic and the metabolic effects of p-synephrine was found. p-Synephrine stimulated both cAMP overflow and the initial Ca2+ release from the cellular stores previously labeled with 45Ca2+. The metabolic and hemodynamic actions of p-synephrine were strongly inhibited by α-adrenergic antagonists and moderately affected by β-adrenergic antagonists. The results allow to conclude that p-synephrine presents important metabolic and hemodynamic effects in the liver. These effects can be considered as both catabolic (glycogenolysis) and anabolic (gluconeogenesis), they are mediated by both α- and β-adrenergic signaling, require the simultaneous participation of both Ca2+ and cAMP, and could be contributing to the overall stimulation of metabolism that usually occurs during weight loss periods.  相似文献   

6.
Zonation of the actions of ethanol on gluconeogenesis and ketogenesis from lactate were investigated in the bivascularly perfused rat liver. Livers from fasted rats were perfused bivascularly in the antegrade and retrograde modes. Ethanol and lactate were infused into the hepatic artery (antegrade and retrograde) and portal vein. A previously described quantitative analysis that takes into account the microcirculatory characteristics of the rat liver was extended to the analysis of zone-specific effects of inhibitors. Confirming previous reports, gluconeogenesis and the corresponding oxygen uptake increment due to saturable lactate infusions were more pronounced in the periportal region. Arterially infused ethanol inhibited gluconeogenesis more strongly in the periportal region (inhibition constant = 3.99 ± 0.22 mM) when compared to downstream localized regions (inhibition constant = 8.64 ± 2.73 mM). The decrease in oxygen uptake caused by ethanol was also more pronounced in the periportal zone. Lactate decreased ketogenesis dependent on endogenous substrates in both regions, periportal and perivenous, but more strongly in the former. Ethanol further inhibited ketogenesis, but only in the periportal zone. Stimulation was found for the perivenous zone. The predominance of most ethanol effects in the periportal region of the liver is probably related to the fact that its transformation is also clearly predominant in this region, as demonstrated in a previous study. The differential effect on ketogenesis, on the other hand, suggest that the net effects of ethanol are the consequence of a summation of several partial effects with different intensities along the hepatic acini.  相似文献   

7.
1. The uptake, metabolism and biliary excretion of the cysteinyl leukotrienes LTC4, LTD4 and LTE4, were studied in a non-recirculating rat liver perfusion system at constant flow in both antegrade (from the portal to the caval vein) and retrograde (from the caval to the portal vein) perfusion directions. During a 5-min infusion of [3H]LTC4, [3H]LTD4 and [3H]LTE4 (10 nmol/l each) in antegrade perfusions single-pass extractions of radioactivity from the perfusate were 66%, 81% and 83%, respectively. Corresponding values for LTC4 and LTD4 in retrograde perfusions were 83% and 93%, respectively, indicating a more efficient uptake of cysteinyl leukotrienes in retrograde than in antegrade perfusions. The concentrations of unmetabolized leukotrienes in the effluent perfusate were 8-12% in antegrade and 2-4% in retrograde perfusions. [14C]Taurocholate extraction from the perfusate was inhibited by LTC4 by only 3%, suggesting that an opening of portal-venous/hepatic-venous shunts does not explain the effects of perfusion direction on hepatic LTC4 uptake. 2. Following infusion of [3H]LTC4 and [3H]LTD4, in the antegrade perfusion direction, about 80% and 87%, respectively, of the radiolabel taken up by the liver was excreted into bile. In retrograde perfusions, however, only 40% and 57%, respectively, was excreted into bile and the remainder was slowly redistributed into the perfusate, indicating that leukotrienes were taken up into a hepatic compartment with less effective biliary elimination or converted to metabolites escaping biliary excretion. The metabolite pattern found in bile was not affected by the direction of perfusion. Biliary products of LTC4 were polar metabolites (31-38%), LTD4 (27-30%), LTE4 (about 1%) and N-acetyl-LTE4 (3-4%) in addition to unmodified LTC4 (17-18%). 3. LTC4 was identified as a major metabolite of [3H]LTD4 in bile, amounting to about 20% of the total radioactivity excreted into bile. This is probably due to a gamma-glutamyltransferase-catalyzed glutamyl transfer from glutathione in the biliary compartment, as demonstrated in in vitro experiments. The presence of sinusoidal gamma-glutamyltransferase activity in perfused rat liver was shown in experiments on the hydrolysis of infused gamma-glutamyl-p-nitroanilide. 90% inhibition of this enzyme activity by AT-125 did not affect the metabolism of LTC4. 4. When [3H]LTE4 was infused in the antegrade perfusion direction, biliary metabolites comprised N-acetyl-LTE4 (24%) and polar components (60%).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
In the present study, we show that the extracellular addition of nicotinamide adenine dinucleotide (NAD+) induces a transient rise in [Ca2+]i in human monocytes caused by an influx of extracellular calcium. The NAD+-induced Ca2+ response was prevented by adenosine triphosphate (ATP), suggesting the involvement of ATP receptors. Of the two subtypes of ATP receptors (P2X and P2Y), the P2X receptors were considered the most likely candidates. By the use of subtype preferential agonists and antagonists, we identified P2X1, P2X4, and P2X7 receptors being engaged in the NAD+-induced rise in [Ca2+]i. Among the P2X receptor subtypes, the P2X7 receptor is unique in facilitating the induction of nonselective pores that allow entry of ethidium upon stimulation with ATP. In monocytes, opening of P2X7 receptor-dependent pores strongly depends on specific ionic conditions. Measuring pore formation in response to NAD+, we found that NAD+ unlike ATP lacks the ability to induce this pore-forming response. Whereas as little as 100 μM ATP was sufficient to activate the nonselective pore, NAD+ at concentrations up to 2 mM had no effect. Taken together, these data indicate that despite similarities in the action of extracellular NAD+ and ATP there are nucleotide-specific variations. So far, common and distinct features of the two nucleotides are only beginning to be understood.  相似文献   

9.
1. The metabolic and hemodynamic effects of prostaglandin F2 alpha, leukotriene C4 and the thromboxane A2 analogue U-46619 were studied during physiologically antegrade (portal to hepatic vein) and retrograde (hepatic to portal vein) perfusion and in a system of two rat livers perfused in sequence. 2. The stimulatory effects of prostaglandin F2 alpha (3 microM) on hepatic glucose release, perfusion pressure and net Ca2+ release were diminished by 77%, 95% and 64%, respectively, during retrograde perfusion when compared to the antegrade direction, whereas the stimulation of 14CO2 production from [1-14C]glutamate by prostaglandin F2 alpha (which largely reflects the metabolism of perivenous hepatocytes) was lowered by only 20%. Ca2+ mobilization and glucose release from the liver comparable to that seen during antegrade perfusion could also be observed in retrograde perfusions; however, higher concentrations of the prostaglandin were required. 3. The glucose, Ca2+ and pressure response to leukotriene C4 (20 nM) or the thromboxane A2 analogue U-46619 (200 nM) of livers perfused in the antegrade direction were diminished by about 90% during retrograde perfusion. Sodium nitroprusside (20 microM) decreased the pressure response to leukotriene C4 (20 nM) and U-46619 (200 nM) by about 40% and 20% in antegrade perfusions, respectively, but did not affect the maximal increase of glucose output. 4. When two livers were perfused antegradely in series, such that the perfusate leaving the first liver (liver I) entered a second liver (liver II), infusion of U-46619 at concentrations below 200 nM to the influent perfusate of liver I increased the portal pressure of liver I, but not of liver II. At higher concentrations of U-46619 there was also an increase of the portal pressure of liver II and with concentrations above 800 nM the pressure responses of both livers were near-maximal [19.6 +/- 0.8 (n = 7) cm H2O and 16.5 +/- 1.1 (n = 8) cm H2O for livers I and II, respectively]. There was a similar behaviour of glucose release from livers I and II in response to U-46619 infusion. When liver I was perfused in the retrograde direction, a significant pressure or glucose response of liver II (antegrade perfusion) could not be observed even with U-46619 concentrations up to 1000 nM. 5. Similarly, the perfusion pressure increase and glucose release induced by leukotriene C4 (10 nM) observed with liver II was only about 20% of that seen with liver I.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The metabolism of fructose was investigated in the bivascularly and hemoglobin-free perfused rat liver. Anterograde and retrograde perfusions were performed. In anterograde perfusion, fructose was infused at identical rates (19 mumols min-1 g-1) via the portal vein (all liver cells) or the hepatic artery (predominantly perivenous cells); in retrograde perfusion fructose was infused via the hepatic vein (all liver cells) or the hepatic artery (only periportal cells). The cellular water spaces accessible via the hepatic artery were measured by means of the multiple-indicator dilution technique. The following results were obtained. (i) Fructose was metabolized to glucose, lactate and pyruvate even when this substrate was infused via the hepatic artery in retrograde perfusion; oxygen consumption was also increased. (ii) When referred to the water spaces accessible to fructose via the hepatic artery in each perfusion mode, the rate of glycolysis was 0.99 +/- 0.14 mumols min-1 ml-1 in the retrograde mode; and, 2.05 +/- 0.19 mumols min-1 ml-1 in the anterograde mode (P = 0.002). (iii) The extra oxygen uptake due to fructose infusion via the hepatic artery was 1.09 +/- 0.16 mumols min-1 ml-1 in the retrograde mode; and, 0.51 +/- 0.08 mumols min-1 ml-1 in the anterograde mode (P = 0.005). (iv) Glucose production from fructose via the hepatic artery was 2.18 +/- 0.18 mumols min-1 ml-1 in the retrograde mode; and, 1.83 +/- 0.16 mumols min-1 ml-1 in the anterograde mode (P = 0.18). (v) Glucose production and extra oxygen uptake due to fructose infusion did not correlate by a single factor in all perfusion modes. It was concluded that: (a) rates of glycolysis are lower in the periportal area, confirming previous views; (b) extra oxygen uptake due to fructose infusion is higher in the periportal area; (c) a predominance of glucose production in the periportal area could not be demonstrated; and (d) extra oxygen uptake due to fructose infusion is not a precise indicator for glucose synthesis.  相似文献   

11.
Errata     
1. (1) The significance of the specific (ouabain-sensitive) 86Rb+ or 42K+ uptake by cardiac muscle preparations which are not ‘sodium-loaded’ was studied.
2. (2) In left atrial preparations of guinea-pig heart, resting 86Rb+ uptake was relatively low. It was markedly increased by electrical stimulation. This stimulated uptake was further enhanced by isoproterenol and inhibited by verapamil.
3. (3) In rat atria, the resting 86Rb+ uptake was somewhat higher than in guinea-pig atria, and the increase in uptake caused by electrical stimulation was smaller. In guinea-pig right ventricular papillary muscle, the resting uptake was highest among those tissues studied, and the response to electrical stimulation was smallest. In the latter tissue, verapamil produced only a minimal inhibition of the specific 86Rb+ uptake.
4. (4) The effect of the frequency of electrical stimulation on 86Rb+ uptake paralleled its influence on the force of contraction, suggesting the involvement of intracellular sodium in both events.
5. (5) In both left atrial and right papillary muscle preparations of guinea-pig heart, specific 42K+ uptake observed with 5.8 mM K+ was relatively high, and was increased only slightly by electrical stimulation. This electrical stimulation, however, increased ouabain-induced inhibition of 42K+ uptake, suggesting that the stimulation increases the amount of Na+ available to the sodium pump.
6. (6) When the K+ concentration was 1 mM, the resting 42K+ uptake was low, and could be enhanced by electrical stimulation.
Keywords: Rb+ uptake; K+ uptake; Electrical stimulation; Na+ influex; (Cardiac muscle)  相似文献   

12.
S Y Ou  S A Kempson  T P Dousa 《Life sciences》1981,29(12):1195-1202
Gluconeogenesis in rat renal cortex was measured using tissue slices incubated with or without appropriate substrates. Immediately after incubation the tissue slices were snap-frozen and the content of oxidized nicotinamide adenine dinucleotide (NAD+) was determined. Incubation with 10 mM α-ketoglutarate or L-glutamate led to enhanced glucose production and an increase in tissue content of NAD+. Quinolinate and 3-mercaptopicolinate inhibited the rate of gluconeogenesis from L-glutamate and α-ketoglutarate respectively, and decreased the tissue levels of NAD+. The enhanced rate of gluconeogenesis was associated with an increase of NAD+ in the cytosol fraction (105 × g supernatant) but not in the particulate fraction (105 × g pellet) of renal cortex homogenate. Present results indicate that NAD+ content changes in parallel with the rate of gluconeogenesis in renal cortical tissue.  相似文献   

13.
Sirtuin1 (SIRT1) deacetylase and poly(ADP-ribose)-polymerase-1 (PARP-1) respond to environmental cues, and both require NAD+ cofactor for their enzymatic activities. However, the functional link between environmental/oxidative stress-mediated activation of PARP-1 and SIRT1 through NAD+ cofactor availability is not known. We investigated whether NAD+ depletion by PARP-1 activation plays a role in environmental stimuli/oxidant-induced reduction in SIRT1 activity. Both H2O2 and cigarette smoke (CS) decreased intracellular NAD+ levels in vitro in lung epithelial cells and in vivo in lungs of mice exposed to CS. Pharmacological PARP-1 inhibition prevented oxidant-induced NAD+ loss and attenuated loss of SIRT1 activity. Oxidants decreased SIRT1 activity in lung epithelial cells; however increasing cellular NAD+ cofactor levels by PARP-1 inhibition or NAD+ precursors was unable to restore SIRT1 activity. SIRT1 was found to be carbonylated by CS, which was not reversed by PARP-1 inhibition or selective SIRT1 activator. Overall, these data suggest that environmental/oxidant stress-induced SIRT1 down-regulation and PARP-1 activation are independent events despite both enzymes sharing the same cofactor.  相似文献   

14.
The uptake of monovalent cations by yeast via the monovalent cation uptake mechanism is inhibited by phosphate. The inhibition of Rb+ uptake shows saturation kinetics and the phosphate concentration at which halfmaximal inhibition is observed is equal to the Km of phosphate for the sodiumindependent phosphate uptake mechanism. The kinetic coefficients of Rb+ and Tl+ uptake are affected by phosphate: the maximal rate of uptake is decreased and the apparent affinity constants for the translocation sites are increased.In the case of Na+ uptake, the inhibition by phosphate may be partly or completely compensated by stimulation of Na+ uptake via a sodium-phosphate cotransport mechanism.Phosphate effects a transient stimulation of the efflux of the lipophilic cation dibenzyldimenthylammonium from preloaded yeast cells and a transient inhibition of dibenzyldimethylammonium eptake. Possibly, the inhibition of monovalent cation uptake in yeast can be explained by a transient depolarization of the cell membrane by phosphate.  相似文献   

15.
Addition of NAD+ to purified potato (Solanum tuberosum L.) mitochondria respiring α-ketoglutarate and malate in the presence of the electron transport inhibitor rotenone, stimulated O2 uptake. This stimulation was prevented by incubating mitochondria with N-4-azido-2-nitrophenyl-aminobutyryl-NAD+ (NAP4-NAD+), an inhibitor of NAD+ uptake, but not by 1 mm EGTA, an inhibitor of external NADH oxidation. NAD+-stimulated malate-cytochrome c reductase activity, and reduction of added NAD+ by intact mitochondria, could be duplicated by rupturing the mitochondria and adding a small quantity to the cuvette. The extent of external NAD+ reduction was correlated with the amount of extra mitochondrial malate dehydrogenase present. Malate oxidation by potato mitochondria depleted of endogenous NAD+ by storing on ice for 72 hours, was completely dependent on added NAD+, and the effect of NAD+ on these mitochondria was prevented by incubating them with NAP4-NAD+. External NAD+ reduction by these mitochondria was not affected by NAP4-NAD+. We conclude that all effects of exogenous NAD+ on plant mitochondrial respiration can be attributed to net uptake of the NAD+ into the matrix space.  相似文献   

16.
The activities of nuclear enzymes involved in NAD+ metabolism in Saccharomyces cerevisiae strain 913a-1 and its mutant 110 previously selected as an NAD+ producer were investigated. The presence of extracellular nicotinamide increased the total NAD+ pool in the cells and increased [3H]nicotinic acid incorporation; however, NAD+ concentration in isolated nuclei decreased slightly. The stimulating effect of nicotinamide on intracellular synthesis of NAD+ correlated with increases in ADP-ribosyl transferase, NAD+-pyrophosphorylase, and NAD+ ase activities.  相似文献   

17.
We previously demonstrated inhibition of Na+-dependent 32Pi transport in canine renal brush-border membranes in association with NAD+-induced ADP ribosylation of membrane protein(s) and postulated that NAD+ inhibits Pi transport across the brush-border membrane via ADP ribosylation. Recently it was shown that incubation of rat brush-border membrane with NAD+ resulted in release of Pi which was prevented by EDTA. It was proposed that NAD+-mediated inhibition of 32Pi transport might occur through this mechanism. To determine whether NAD+ inhibited 32Pi transport by a mechanism other than or in addition to release of Pi, we compared Na+-dependent 32Pi counterflow in brush-border membrane equilibrated with Pi or with Pi generated from NAD+. Release of Pi from NAD+ incubated with brush-border membrane was confirmed. The increased uptake of 32Pi which was demonstrated in brush-border membrane equilibrated with Pi was not measured when intravesicular Pi was generated from a concentration of NAD+ which effected ADP-ribosylation of brush border membranes (100 μM NAD+). In contrast, increased uptake of 32Pi was demonstrated when intravesicular Pi was generated from 1 μM NAD+ which did not effect ADP ribosylation. Mg2+-dependent ADP ribosylation of brush-border membrane incubated with NAD+ was demonstrated which persisted during the time interval of 32Pi uptake measurements. Our findings are compatible with the hypothesis that NAD+-induced ADP ribosylation of brush-border membrane protein(s) results in inhibition of Pi transport across the membrane in vivo. EDTA may act to prevent this inhibition in brush-border membrane by chelation of Mg2+ and decreased ADP ribosylation.  相似文献   

18.
Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD+ has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD+ homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD+ levels and expression levels of NAD+ homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD+ levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD+ synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD+ homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD+ levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD+. The agonist-induced rise in NAD+ shows striking parallels to well-known second messengers and raises the possibility that NAD+ is acting in a similar manner in this model.  相似文献   

19.
The effects of trifluoperazine on hepatic cell metabolism were investigated using isolated perfused rat liver. The following effects of trifluoperazine were found: (1) trifluoperazine inhibited oxygen uptake, the site of action being the mitochondria. Half-maximal inhibition occurred at concentrations around 50 μM; with 100 μM trifluoperazine the effect was already maximal. When Ca2+ was withdrawn from the perfusion medium and the intracellular Ca2+ pools were exhausted, the inhibitory action on respiration was no longer observable. The rein-troduction of Ca2+ restored inhibition. (2) Glycogenolysis and glycolysis were not significantly affected during the infusion of trifluoperazine. After stopping trifluoperazine infusion, however, glycogenolysis (glucose release) experienced a transitory stimulation. (3) Gluconeogenesis from lactate as the carbon source was inhibited by trifluoperazine. This inhibition was approximately proportional to the inhibition of oxygen uptake. Withdrawal of Ca2+ diminished, but it did not eliminate, inhibition of gluconeogenesis. (4) Ketogenesis was also inhibited in parallel with the inhibition of oxygen uptake. Withdrawal of Ca2+ from the perfusion fluid also abolished this action. (5) The effects of trifluoperazine were reverted very slowly when its infusion was stopped. The recovery of oxygen uptake at 50 min after cessation of the infusion was only 30%. Uptake of the substance was very fast. Absence of Ca2+ did not affect uptake. It was concluded that inhibition of mitochondrial energy metabolism is one of the most prominent effects of trifluoperazine in the liver. The fact that this inhibition depends on Ca2+ is unique.  相似文献   

20.
Extracellular nicotinamide adenine dinucleotide (NAD+) is known to increase the intracellular calcium concentration [Ca2+]i in different cell types and by various mechanisms. Here we show that NAD+ triggers a transient rise in [Ca2+]i in human monocytes activated with lipopolysaccharide (LPS), which is caused by a release of Ca2+ from IP3-responsive intracellular stores and an influx of extracellular Ca2+. By the use of P2 receptor-selective agonists and antagonists we demonstrate that P2 receptors play a role in the NAD+-induced calcium response in activated monocytes. Of the two subclasses of P2 receptors (P2X and P2Y) the P2Y receptors were considered the most likely candidates, since they share calcium signaling properties with NAD+. The identification of P2Y1 and P2Y11 as receptor subtypes responsible for the NAD+-triggered increase in [Ca2+]i was supported by several lines of evidence. First, specific P2Y1 and P2Y11 receptor antagonists inhibited the NAD+-induced increase in [Ca2+]i. Second, NAD+ was shown to potently induce calcium signals in cells transfected with either subtype, whereas untransfected cells were unresponsive. Third, NAD+ caused an increase in [cAMP]i, prevented by the P2Y11 receptor-specific antagonist NF157.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号