首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hox genes are well-known regulators of pattern formation and cell differentiation in the developing vertebrate skeleton. Although skeletal variations are not uncommon in humans few mutations in human HOX genes have been described. If such mutations are compatible with life, there may be physiological modifiers for the manifestation of Hox gene-controlled phenotypes, masking underlying mutations. Here we present evidence that the essential nutrient folate modulates genetically induced skeletal defects in Hoxd4 transgenic mice. We also show that chondrocytes require folate for growth and differentiation and that they express folate transport genes, providing evidence for a direct effect of folate on skeletal cells. To our knowledge, this is the first report of nutritional influence on Hox gene-controlled phenotypes, and implicates gene-environment interactions as important modifiers of Hox gene function. Taken together, our results demonstrate a beneficial effect of folate on skeletal development that may also be relevant to disorders and variations of the human skeleton.  相似文献   

2.
Many forelimb muscles (e.g. coracobrachialis, rhomboids, serratus sheet) are much less complex and much smaller in humans than in other primates. Yet human muscular variations and persistent fascial sheets indicate that increased size and complexity were once the norm. These muscular reductions are associated with equivalent skeletal gracilisation. Is it possible that molecular phenomena, not unlike those producing reduction of the jaw muscles and associated with gracilisation of the skull in species with reduced need for powerful mastication, may also have reduced forelimb muscles with gracilisation of its skeleton in species no longer using a forelimb for powerful locomotion? Could such molecular and skeletal changes be dated (as for the masticatory muscles) thus giving the time of origination of prehuman forelimb reduction and true bipedalism?  相似文献   

3.
MYH3, whose function is to convert chemical energy to mechanical energy through ATP hydrolysis, is mainly expressed in skeletal muscle at various stages and is indispensable in the procedure of development of skeletal muscle and heart. In the study, genetic variations and genotypes of MYH 3 gene in a total of 365 Qinchuan cattles were analyzed by polymerase chain reaction-restriction fragment length polymorphism, as well as verified the effect on growth and carcass traits. After PCR products were digested by restriction enzymes, eight SNPs were identified and individuals were genotyped. It showed that the SNPs at nucleotides were all in low linkage disequilibrium, therefore no dominated haplotype was found in the population. The result of statistic analysis indicated seven SNPs were significantly associated with growth and carcass traits (P < 0.05, N = 365) except locus G13791A. To sum up, the result of the study proved that polymorphisms in MYH3 gene are associated with the growth performance of Chinese Qinchuan cattle, so the variations of the gene could be used as possible molecular assisted-makers in the beef cattle breeding program and management.  相似文献   

4.
5.
Osteopetrosis is a group of metabolic bone diseases characterized by reductions in osteoclast development and/or function. These aspects of osteoclast biology are known to be influenced by osteoblasts and their products. To ascertain whether osteoblast dysfunction contributes to aberrations in the structural and functional properties of osteoclasts in osteopetrosis, we systematically examined gene expression as reflected by mRNA levels for a series of cell growth- and tissue-related genes associated with the osteoblast phenotype during skeletal development in normal and mutant rats of three different osteopetrotic stocks. We show that the methods used permit the reproducible isolation of undegraded total cellular RNA from bone and that mRNA levels can be reliably quantitated in these preparations. Each osteopetrotic mutation exhibits a distinct aberrant pattern of osteoblast gene expression that may be correlated with and explain some abnormalities in extracellular matrix composition, mineralization, osteoclast development, and effects of elevated serum levels of 1 alpha,25-dihydroxyvitamin D3, depending upon the mutation. Normal rats show minor variations in gene expression that reflect the genetic background (stock). This, the first comprehensive molecular analysis of osteoblast gene expression in osteopetrosis, suggests that some osteopetroses, particularly in the toothless rat, are associated with and potentially related to mechanisms associated with aberrations in osteoblast function. More generally, the present studies demonstrate alterations in gene expression as reflected by mRNA levels that are associated with functional properties of the osteoblast, particularly those contributing to the recruitment and/or differentiation of osteoclasts, thereby influencing skeletal modeling.  相似文献   

6.
HSP70-related proteins in bovine skeletal muscle   总被引:6,自引:0,他引:6  
Constitutive expression of HSP70-related proteins was detected in a variety of bovine tissues using a specific antibody. All tissues contained a 73 kilodalton protein. A lower molecular weight form (72 kilodaltons) that co-migrated on two-dimensional gels with the stressed-induced HSP70 was present in high levels in bovine skeletal muscle, but absent from rat skeletal muscle. Two-dimensional gel analysis revealed several isoforms for both the 73 and 72 kilodalton forms. Purification of HSP70-related proteins from bovine skeletal muscle, thymus gland and rat skeletal muscle demonstrated that the antibody recognized all the forms present in the tissue homogenates. The two proteins are similar but distinct as detected by one-dimensional peptide mapping. The lower molecular form was not present in fetal tissue but was detectable in newborn animals, suggesting that the levels are regulated during development.  相似文献   

7.
Skeletogenesis is an exquisitely orchestrated and dynamic process, culminating in the formation of highly variable and complex mineralized structures that are optimized for their function. While cellular and molecular biology studies have provided tremendous recent progress toward understanding how patterns of bone formation are regulated, high resolution imaging techniques such as microcomputed tomography (micro-CT) can provide complementary quantitative information about the progressive changes in three-dimensional (3-D) skeletal morphology and density that occur during early skeletal development and postnatal growth. Furthermore, recently developed in vivo micro-CT systems promise to be a powerful and efficient tool for noninvasively monitoring normal skeletogenesis, as well as for evaluating the effects of genetic or environmental manipulation. This review focuses on the use of micro-CT imaging and analysis to better understand normal and abnormal skeletal development and growth.  相似文献   

8.
The skeletal muscle sodium pump plays a major role in the removal of K(+) ions from the circulation postprandial, or after a physical activity bout, thereby preventing the development of hyperkalemia and fatigue. Insulin and muscle contractions stimulate Na(+)-K(+)-ATPase activity in skeletal muscle, at least partially via translocation of sodium pump units to the plasma membrane from intracellular stores. The molecular mechanism of this phenomenon is poorly understood. Due to the contradictory reports in the literature, the very existence of the translocation of Na(+)-K(+)-ATPase to the skeletal muscle cell surface is questionable. This review summarizes more than 30 years work on the skeletal muscle sodium pump translocation paradigm. Furthermore, the methodological caveats of major approaches to study the sodium pump translocation in skeletal muscle are discussed. An understanding of the molecular regulation of Na(+)-K(+)-ATPase in skeletal muscle will have important clinical implications for the understanding of the development of complications associated with the metabolic syndrome, such as cardiovascular diseases or increased muscle fatigue in diabetic patients.  相似文献   

9.
10.
骨骼肌发育的分子遗传学   总被引:1,自引:0,他引:1  
综述了近年来对骨骼肌发育中分子信号途径和MDFs家族成员调控作用的研究进展.MDFs可以直接控制肌肉结构基因的表达,也可以激活中间调控因子或它们共同控制肌源性表型.调控因子MEF2能作为MDF作用的媒介.Pax-3是肌肉发育的早期阶段中必不可少的.心肌和骨骼肌组织之间有许多相似性,二者基因表达的调控途径也有某种程度的保守性.  相似文献   

11.
12.
Long noncoding RNAs (lncRNAs) are involved in the regulation of skeletal muscle development. In the present study, differentially expressed lncRNAs were identified from RNA-seq data derived from myoblasts and myotubes. We conducted studies to elucidate the function and molecular mechanism of action of Linc-smad7 during skeletal muscle development. Our findings show that Linc-smad7 is upregulated during the early phase of myoblasts differentiation. In in vitro studies, we showed that overexpression of Linc-smad7 promoted the arrest of myoblasts in G1 phase, inhibited DNA replication, and induced myoblast differentiation. Our in vivo studies suggest that Linc-smad7 stimulates skeletal muscle regeneration in cardiotoxin-induced muscle injury. Mechanistically, Linc-smad7 overexpression increased smad7 and IGF2 protein levels. On the contrary, overexpression of miR-125b reduced smad7 and IGF2 protein levels. Results of RNA immunoprecipitation analysis and biotin-labeled miR-125b capture suggest that Linc-smad7 could act as a competing endogenous RNA (ceRNA) for miRNA-125b. Taken together, our findings suggest that the novel noncoding regulator Linc-smad7 regulates skeletal muscle development.  相似文献   

13.
A genetic and molecular revolution is taking place in medicine today. Led by the Human Genome Project, genetic information and concepts are changing the way diseases are defined, diagnoses are made, and treatment strategies are developed. The profound implications of actually understanding the molecular abnormalities of many clinical problems are affecting virtually all medical and surgical disciplines. The ability to apply knowledge gleaned from the laboratory is our best hope for developing strategies to modify the pathologic effects of genes (by drug therapy), repair genes (gene therapy), and restore lost or affected tissues (tissue engineering). Instead of an empiric trial-and-error approach to therapy, it may become feasible to tailor treatment to the specific molecular malfunction. In this review we have chosen to emphasize a few selected musculoskeletal disorders, including skeletal dysplasias, spinal deformities, developmental dislocation of the hip, and idiopathic clubfoot. The logical extension of our understanding of the molecular players in many of these disorders is to establish precisely what the products of the affected genes do during skeletal development, and how mutations disturb these functions to produce the characteristic phenotype. Despite the many hypotheses generated from the work in human genetics, and the knowledge that has been gained from animal models, there remains a relatively poor understanding of how these genes interfere with skeletal development. Unraveling these mysteries and defining them in molecular and cellular terms will be the challenges for the near future.  相似文献   

14.
15.
Chondrodysplasias due to proteoglycan defects   总被引:7,自引:0,他引:7  
The proteoglycans, especially the large chondroitin sulfate proteoglycan aggrecan, have long been viewed as important components of the extracellular matrix of cartilage. The drastic change in expression during differentiation from mesenchyme to cartilage, the loss of tissue integrity associated with proteoglycan degradation in several disease processes and, most important, the demonstration of abnormalities in proteoglycan production concomitant with the aberrant growth patterns exhibited by the brachymorphic mouse, the cartilage matrix deficient mouse, and the nanomelic chick provide the strongest evidence that the proteoglycan aggrecan is essential during differentiation and for maintenance of the skeletal elements. More recently, mutations associated with proteoglycans other than aggrecan, especially the heparan sulfate proteoglycans, glypican and perlecan, suggest an important role for these molecules in skeletal development as well. This review focuses on the molecular bases of the hereditary proteoglycan defects in animal models, as well as of some human chondrodysplasias, that collectively are providing a better understanding of the role of proteoglycans in the development and maintenance of the skeletal elements.  相似文献   

16.
From a traditional viewpoint, skeletal elements form by two distinct processes: endochondral ossification, during which a cartilage template is replaced by bone, and intramembranous ossification, whereby mesenchymal cells differentiate directly into osteoblasts. There are inherent difficulties with this historical classification scheme, not the least of which is that bones typically described as endochondral actually form bone through an intramembranous process, and that some membranous bones may have a transient chondrogenic phase. These innate contradictions can be circumvented if molecular and cellular, rather than histogenic, criteria are used to describe the process of skeletal tissue formation. Within the past decade, clinical examinations of human skeletal syndromes have led to the identification and subsequent characterization of regulatory molecules that direct chondrogenesis and osteogenesis in every skeletal element of the body. In this review, we survey these molecules and the tissue interactions that may regulate their expression. What emerges is a new paradigm, by which we can explain and understand the process of normal- and abnormal-skeletal development.  相似文献   

17.
骨骼肌由异质性的肌纤维组成,不同类型的肌纤维具有不同的形态、代谢、生理和生化特性.根据不同肌纤维中表达的特异肌球蛋白重链亚型可将成体哺乳动物骨骼肌纤维分为4类,即Ⅰ,Ⅱa,Ⅱx和Ⅱb型.骨骼肌保持高度可塑性,当机体受到某些生理或病理刺激时,骨骼肌为了适应需要,通过激活胞内相关信号通路改变肌纤维特异基因的表达从而诱发肌纤维类型的转化.本文综述了细胞内参与调控肌纤维类型转化的多条重要信号通路,如Ca2+信号通路,Ras/MAPK信号通路及多种转录调节因子,辅激活因子和抑制子等,为改善肉类品质,提高运动训练效果及治疗肌肉相关疾病奠定了理论基础.  相似文献   

18.
The regulatory protein troponin (Tn) located on actin filament consists of three subunits: TnT--binds troponin to tropomyosin, TnC--binds divalent calcium ions, and TnI--affects myosin-actin interactions. Tn subunits display several molecular and calcium binding variations. During ontogenetic development of cardiac and skeletal muscles the synthesis of multiple isoforms of Tn subunits was detected. Expression of Tn isoforms and the extent of phosphorylation of both TnT and TnI via protein kinase C or protein kinase A under different pathological situations (e.g. ischemia, congenital heart disease, heart failure) can affect the Ca2+-stimulated contraction function and the myofibrillar ATPase activity of the heart.  相似文献   

19.
The genus Agapornis consists of nine small African parrot species that are globally well known as pets, but are also found in their native habitat. Illegal trapping, poaching and habitat destruction are the main threats these birds face in the wild. In aviculture, Agapornis breeding is highly popular all across the globe. Birds are mainly selected based on their plumage colour variations but very little molecular research has been conducted on this topic. There are 30 known colour variations amongst the nine species and most of these are inherited as Mendelian traits. However, to date none of the genes or polymorphisms linked to these variations have been identified or verified. Due to unethical breeding practices, the need for the development of molecular tests such as identification verification tests or species identity tests is growing. Future research is paramount to ensure the conservation of wild populations as well as aiding breeders in improving breeding strategies.  相似文献   

20.
Yan X  Ding L  Li Y  Zhang X  Liang Y  Sun X  Teng CB 《PloS one》2012,7(1):e30925
The common carp is one of the most important cultivated species in the world of freshwater aquaculture. The cultivation of this species is particularly productive due to its high skeletal muscle mass; however, the molecular mechanisms of skeletal muscle development in the common carp remain unknown. It has been shown that a class of non-coding ~22 nucleotide RNAs called microRNAs (miRNAs) play important roles in vertebrate development. They regulate gene expression through sequence-specific interactions with the 3' untranslated regions (UTRs) of target mRNAs and thereby cause translational repression or mRNA destabilization. Intriguingly, the role of miRNAs in the skeletal muscle development of the common carp remains unknown. In this study, a small-RNA cDNA library was constructed from the skeletal muscle of the common carp, and Solexa sequencing technology was used to perform high throughput sequencing of the library. Subsequent bioinformatics analysis identified 188 conserved miRNAs and 7 novel miRNAs in the carp skeletal muscle. The miRNA expression profiling showed that, miR-1, miR-133a-3p, and miR-206 were specifically expressed in muscle-containing organs, and that miR-1, miR-21, miR-26a, miR-27a, miR-133a-3p, miR-206, miR-214 and miR-222 were differentially expressed in the process of skeletal muscle development of the common carp. This study provides a first identification and profiling of miRNAs related to the muscle biology of the common carp. Their identification could provide clues leading towards a better understanding of the molecular mechanisms of carp skeletal muscle development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号