首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human embryonic stem cells (hESC) are pluripotent, and can be directed to differentiate into different cell types for therapeutic applications. To expand hESCs, it is desirable to maintain hESC growth without differentiation. As hESC colonies grow, differentiated cells are often found at the periphery of the colonies, but the underlying mechanism is not well understood. Here, we utilized micropatterning techniques to pattern circular islands or strips of matrix proteins, and examined the spatial pattern of hESC renewal and differentiation. We found that micropatterned matrix restricted hESC differentiation at colony periphery but allowed hESC growth into multiple layers in the central region, which decreased hESC proliferation and induced hESC differentiation. In undifferentiated hESCs, β-catenin primarily localized at cell-cell junctions but not in the nucleus. The amount of β-catenin in differentiating hESCs at the periphery of colonies or in multiple layers decreased significantly at cell-cell junctions. Consistently, knocking down β-catenin decreased Oct-4 expression in hESCs. These results indicate that localized decrease of β-catenin contributes to the spatial pattern of differentiation in hESC colonies.  相似文献   

2.
Human embryonic stem cells (hESCs) can serve as an unlimited cell source for cellular transplantation and tissue engineering due to their prolonged proliferation capacity and their unique ability to differentiate into derivatives of all three-germ layers. In order to reliably and safely produce hESCs, use of reagents that are defined, qualified, and preferably derived from a non-animal source is desirable. Traditionally, mouse embryonic fibroblasts (MEFs) have been used as feeder cells to culture undifferentiated hESCs. We recently reported a scalable feeder-free culture system using medium conditioned by MEFs. The base and conditioned medium (CM) still contain unknown bovine and murine-derived components, respectively. In this study, we report the development of a hESC culture system that utilizes a commercially available serum-free medium (SFM) containing human sourced and recombinant proteins supplemented with recombinant growth factor(s) and does not require conditioning with feeder cells. In this system, which employs human laminin coated surface and high concentration of hbFGF, the hESCs maintained undifferentiated hESC morphology and had a twofold increase in expansion compared to hESCs grown in MEF-CM. The hESCs also expressed surface markers SSEA-4 and Tra-1-60 and maintained expression of hTERT, Oct4, and Cripto genes similar to cells cultured in MEF-CM. In addition, hESCs maintained in this culture system were able to differentiate in vitro and in vivo into cells of all three-germ layers. The cells maintained a normal karyotype after prolonged culture in SFM. In summary, this study demonstrates that the hESCs cultured in defined non-conditioned serum-free medium (NC-SFM) supplemented with growth factor(s) retain the characteristics and replicative potential of hESCs. The use of defined culture system with NC-SFM on human laminin simplifies scale-up and allows for reproducible generation of hESCs under defined and controlled conditions that would serve as a starting material for production of hESC derived cells for therapeutic use.  相似文献   

3.
Ma Y  Jin J  Dong C  Cheng EC  Lin H  Huang Y  Qiu C 《RNA (New York, N.Y.)》2010,16(12):2564-2569
Loss-of-function studies in human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) via nonviral approaches have been largely unsuccessful. Here we report a simple and cost-effective method for high-efficiency delivery of plasmids and siRNAs into hESCs and iPSCs. Using this method for siRNA delivery, we achieve >90% reduction in the expression of the stem cell factors Oct4 and Lin28, and observe cell morphological and staining pattern changes, characteristics of hESC differentiation, as a result of Oct4 knockdown.  相似文献   

4.
5.
As a result of their pluripotency and potential for unlimited self‐renewal, human embryonic stem cells (hESCs) hold tremendous promise in regenerative medicine. An essential prerequisite for the widespread application of hESCs is the establishment of effective and efficient protocols for large‐scale cell culture, storage, and distribution. At laboratory scales hESCs are cultured adherent to tissue culture plates; these culture techniques are labor‐intensive and do not scale to high cell numbers. In an effort to facilitate larger scale hESC cultivation, we investigated the feasibility of culturing hESCs adherent to microcarriers. We modified the surface of Cytodex 3 microcarriers with either Matrigel or mouse embryonic fibroblasts (MEFs). hESC colonies were effectively expanded in a pluripotent, undifferentiated state on both Matrigel‐coated microcarriers and microcarriers seeded with a MEF monolayer. While the hESC expansion rate on MEF‐microcarriers was less than that on MEF‐plates, the doubling time of hESCs on Matrigel‐microcarriers was indistinguishable from that of hESCs expanded on Matrigel‐coated tissue culture plates. Standard hESC cryopreservation methodologies are plagued by poor viability and high differentiation rates upon thawing. Here, we demonstrate that cryopreservation of hESCs adherent to microcarriers in cryovials provides a higher recovery of undifferentiated cells than cryopreservation of cells in suspension. Together, these results suggest that microcarrier‐based stabilization and culture may facilitate hESC expansion and storage for research and therapeutic applications. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

6.
Fluorescence-activated single cell sorting of human embryonic stem cells   总被引:5,自引:0,他引:5  
Human embryonic stem cells (hESC) are the subject of intense investigation for use in regenerative medicine, in toxicity testing, and as models for the study of human development. Automated cell sorting will enhance the isolation of homogenous pools of differentiated hESCs both for basic studies and for therapeutic applications. Sorting could also be used to deplete undifferentiated, potentially tumourigenic cells. However, hESCs are sensitive to single cell disaggregation and recover poorly when plated at clonal density. Here we report a method for successful semi-automated single cell sorting of hESCs. This method utilizes an ES-specific promoter-transgene construct and automated FACS-based single cell sorting and plating. Clonal recovery in physiologic oxygen (2%) was increased fourfold over room oxygen (21%; p < 0.01). This automated protocol will help to realize proposed hESC strategies that are hampered by low throughput and poor yields.  相似文献   

7.
Human embryonic stem cells (hESCs) can self-renew indefinitely and differentiate into all cell types in the human body. Therefore, they are valuable in regenerative medicine, human developmental biology and drug discovery. A number of hESC lines have been derived from the Chinese population,but limited of them are available for research purposes. Here we report the derivation and characterization of two hESC lines derived from human blastocysts of Chinese origin. These hESCs express alkaline phosphatase and hESC-specific markers, including Oct4, Nanog, SSEA-3, SSEA-4,TRA-1-60 and TRA-1-81. They also have high levels of telomerase activity and normal karyotypes. These cells can form embryoid body in vitro and can be differentiated into all three germ layers in vivo by teratoma formation. The newly established hESCs will be distributed for research purposes.The availability of hESC lines from the Chinese population will facilitate studies on the differences in hESCs from different ethnic groups.  相似文献   

8.
This study describes the use of a previously reported chimerised monoclonal antibody (mAb), ch2448, to kill human embryonic stem cells (hESCs) in vivo and prevent or delay the formation of teratomas. ch2448 was raised against hESCs and was previously shown to effectively kill ovarian and breast cancer cells in vitro and in vivo. The antigen target was subsequently found to be Annexin A2, an oncofetal antigen expressed on both embryonic cells and cancer cells. Against cancer cells, ch2448 binds and kills via antibody-dependent cell-mediated cytotoxicity (ADCC) and/or antibody-drug conjugate (ADC) routes. Here, we investigate if the use of ch2448 can be extended to hESC. ch2448 was found to bind specifically to undifferentiated hESC but not differentiated progenitors. Similar to previous study using cancer cells, ch2448 kills hESC in vivo either indirectly by eliciting ADCC or directly as an ADC. The treatment with ch2448 post-transplantation eliminated the in vivo circulating undifferentiated cells and prevented or delayed the formation of teratomas. This surveillance role of ch2448 adds an additional layer of safeguard to enhance the safety and efficacious use of pluripotent stem cell-derived products in regenerative medicine. Thereby, translating the use of ch2448 in the treatment of cancers to a proof of concept study in hESC (or pluripotent stem cell [PSC]), we show that mAbs can also be used to eliminate teratoma forming cells in vivo during PSC-derived cell therapies. We propose to use this strategy to complement existing methods to eliminate teratoma-forming cells in vitro. Residual undifferentiated cells may escape in vitro removal methods and be introduced into patients together with the differentiated cells.  相似文献   

9.
Human embryonic stem cells (hESCs) are pluripotent cells that can differentiate into neural cell lineages. These neural populations are usually heterogeneous and can contain undifferentiated pluripotent cells that are capable of producing teratomas in cell grafts. The characterization of surface protein profiles of hESCs and their neural derivatives is important to determine the specific markers that can be used to exclude undifferentiated cells from neural populations. In this study, we analyzed the cluster of differentiation (CD) marker expression profiles of seven undifferentiated hESC lines using flow-cytometric analysis and compared their profiles to those of neural derivatives. Stem cell and progenitor marker CD133 and epithelial adhesion molecule marker CD326 were more highly expressed in undifferentiated hESCs, whereas neural marker CD56 (NCAM) and neural precursor marker (chemokine receptor) CD184 were more highly expressed in hESC-derived neural cells. CD326 expression levels were consistently higher in all nondifferentiated hESC lines than in neural cell derivatives. In addition, CD326-positive hESCs produced teratomas in SCID mouse testes, whereas CD362-negative neural populations did not. Thus, CD326 may be useful as a novel marker of undifferentiated hESCs to exclude undifferentiated hESCs from differentiated neural cell populations prior to transplantation.  相似文献   

10.
一种新的人胚胎干细胞自身来源的滋养层支持其体外培养   总被引:2,自引:0,他引:2  
摘要: 通过人胚胎干细胞(Human embryonic stem cells, hESCs)经体内分化获取间充质干细胞(Mesenchymal stem cells, MSCs)为人胚胎干细胞提供一种新的滋养层。将约5×106个hESCs注射入重症免疫联合缺陷小鼠形成畸胎瘤, 8周后再从畸胎瘤中分离MSCs并鉴定, 将MSCs作为hESCs的滋养层细胞, 并检测和观察hESCs的生长情况、细胞特性和分化能力。从畸胎瘤中获得了纯度较高的具有类似骨髓来源的MSC特性的细胞群, 其形态相似、表面抗原标志相似(CD34和CD45阴性, CD29、CD49b、CD105、CD73和CD90阳性), 经诱导可以向成骨细胞和成脂细胞分化。将hESCs在MSCs滋养层细胞上传代培养10代以上, hESCs依然具有正常的细胞形态, 反转录PCR证实其特异转录因子Oct4、Nanog的表达, 干细胞表面标记SSEA-1显示为阴性, SSEA-4、TRA-1-60、TRA-1-81显示为阳性, 碱性磷酸酶染色显示为阳性, 并且核型正常。体外EB形成和体内畸胎瘤形成证明了其全能性。因此来源于hESCs本身的MSCs可以被用来作为支持胚胎干细胞生长并维持其未分化状态的滋养层细胞。  相似文献   

11.
Various types of human cells have been tested as feeder cells for the undifferentiated growth of human embryonic stem cells (hESCs) in vitro. We report here the successful culture of two hESC lines (H1 and H9) on human umbilical cord blood (UCB)-derived fibroblast-like cells. These cells permit the long-term continuous growth of undifferentiated and pluripotent hESCs. The cultured hESCs had normal karyotypes, expressed OCT-4, SSEA-4, TRA-1-60, and TRA-1-81, formed cystic embryonic body in vitro and teratomas in vivo after injected into immunodeficient mice. The wide availability of clinical-grade human UCB makes it a promising source of support cells for the growth of hESC for use in cell therapies.  相似文献   

12.
Suspension bioreactors are an attractive alternative to static culture of human embryonic stem cells (hESCs) for the generation of clinically relevant cell numbers in a controlled system. In this study, we have developed a scalable suspension culture system using serum-free defined media with spinner flasks for hESC expansion as cell aggregates. With optimized cell seeding density and splitting interval, we demonstrate prolonged passaging and expansion of several hESC lines with overall expansion, yield, viability and maintenance of pluripotency equivalent to adherent culture. Human ESCs maintained in suspension as aggregates can be passaged at least 20 times to achieve over 1×10(13) fold calculated expansion with high undifferentiation rate and normal karyotype. Furthermore, the aggregates are able to differentiate to cardiomyocytes in a directed fashion. Finally, we show that the cells can be cryopreserved in serum-free medium and thawed into adherent or suspension cultures to continue passaging and expansion. We have successfully used this method under cGMP or cGMP-equivalent conditions to generate cell banks of several hESC lines. Taken together, our suspension culture system provides a powerful approach for scale-up expansion of hESCs under defined and serum-free conditions for clinical and research applications.  相似文献   

13.
Human embryonic stem cells (hESCs) are pluripotent, whereby they can proliferate endlessly and differentiate into many different cell types. At the molecular level, little is known of the mechanisms underlying their capability for self-renewal and differentiation. In the present study, we established two new hESC lines (AMC-hES1 and AMC-hES2) and demonstrated the existence of a regulator that may be a key molecule in hESC dynamics. Spa-1 is a principal Ras-proximate 1 (Rap1) GTPase-activating protein in hematopoietic progenitor cells that regulates Rap1-related signal transduction and is expressed restrictively in human adult tissues (bone marrow, thymus, and spleen). To investigate its functions in hESCs, we examined spa-1 expression profiles during hESC differentiation and used RNA interference (RNAi) to downregulate spa-1 in these cells. Our results show that Spa-1 is expressed in undifferentiated hESCs and is downregulated during hESC differentiation. In addition, the process of passing from the mode of self-renewal to that of differentiation in hESCs was regulated by spa-1 via Rap1/Raf/mitogen-activated protein kinase kinase/extracellular signal-related kinase signaling. An RNAi expression vector against spa-1 (pSUPER.retro.puro) was transfected into hESCs, which were seen to differentiate into three germ layers in spite of being in the undifferentiated condition. Based on our findings, therefore, it appears that spa-1 may be involved in hESC dynamics, and our results provide fundamental information regarding the self-renewal and differentiation of hESCs.  相似文献   

14.
Various types of feeder cells have been adopted for the culture of human embryonic stem cells (hESCs) to improve their attachment and provide them with stemness-supporting factors. However, feeder cells differ in their capacity to support the growth of undifferentiated hESCs. Here, we compared the expression and secretion of four well-established regulators of hESC pluripotency and/or differentiation among five lines of human foreskin fibroblasts and primary mouse embryonic fibroblasts throughout a standard hESC culture procedure. We found that human and mouse feeder cells secreted comparable levels of TGF beta 1. However, mouse feeder cells secreted larger quantities of activin A than human feeder cells. Conversely, FGF-2, which was produced by human feeder cells, could not be detected in culture media from mouse feeder cells. The quantity of BMP-4 was at about the level of detectability in media from all feeder cell types, although BMP-4 dimers were present in all feeder cells. Production of TGF beta 1, activin A, and FGF-2 varied considerably among the human-derived feeder cell lines. Low- and high-producing human feeder cells as well as mouse feeder cells were evaluated for their ability to support the undifferentiated growth of hESCs. We found that a significantly lower proportion of hESCs maintained on human feeder cell types expressed SSEA3, an undifferentiated cell marker. Moreover, SSEA3 expression and thus the pluripotent hESC compartment could be partially rescued by addition of activin A. Cumulatively, these results suggest that the ability of a feeder layer to promote the undifferentiated growth of hESCs is attributable to its characteristic growth factor production.  相似文献   

15.
One of the challenges in studying early differentiation of human embryonic stem cells (hESCs) is being able to discriminate the initial differentiated cells from the original pluripotent stem cells and their committed progenies. It remains unclear how a pluripotent stem cell becomes a lineage-specific cell type during early development, and how, or if, pluripotent genes, such as Oct4 and Sox2, play a role in this transition. Here, by studying the dynamic changes in the expression of embryonic surface antigens, we identified the sequential loss of Tra-1-81 and SSEA4 during hESC neural differentiation and isolated a transient Tra-1-81(-)/SSEA4(+) (TR-/S4+) cell population in the early stage of neural differentiation. These cells are distinct from both undifferentiated hESCs and their committed neural progenitor cells (NPCs) in their gene expression profiles and response to extracellular signalling; they co-express both the pluripotent gene Oct4 and the neural marker Pax6. Furthermore, these TR-/S4+ cells are able to produce cells of both neural and non-neural lineages, depending on their environmental cues. Our results demonstrate that expression of the pluripotent factor Oct4 is progressively downregulated and is accompanied by the gradual upregulation of neural genes, whereas the pluripotent factor Sox2 is consistently expressed at high levels, indicating that these pluripotent factors may play different roles in the regulation of neural differentiation. The identification of TR-S4+ cells provides a cell model for further elucidation of the molecular mechanisms underlying hESC neural differentiation.  相似文献   

16.
Human embryonic stem cells (hESCs) can be maintained as undifferentiated cells in vitro and induced to differentiate into a variety of somatic cell types. Thus, hESCs provide a source of differentiated cell types that could be used to replace diseased cells of a tissue. The efficient cryopreservation of hESCs is important for establishing effective stem cell banks, however, conventional slow freezing methods usually lead to low rates of recovery after thawing cells and their replating in culture. We have established a method for recovering cryopreserved hESCs using pinacidil and compared it to a method that employs the ROCK inhibitor Y-27632. We show that pinacidil is similar to Y-27632 in promoting survival of hESCs after cryopreservation. The cells exhibited normal hESC morphology, retained a normal karyotype, and expressed characteristic hESC markers (OCT4, SSEA3, SSEA4 and TRA-1-60). Moreover, the cells retained the capacity to differentiate into derivatives of all three embryonic germ layers as demonstrated by differentiation through embryoid body formation. Pinacidil has been used for many years as a vasodilator drug to treat hypertension and its manufacture and traceability are well defined. It is also considerably cheaper than Y-27632. Thus, the use of pinacidil offers an efficient method for recovery of cryopreserved dissociated human ES cells.  相似文献   

17.
《Cryobiology》2012,64(3):298-305
Human embryonic stem cells (hESCs) can be maintained as undifferentiated cells in vitro and induced to differentiate into a variety of somatic cell types. Thus, hESCs provide a source of differentiated cell types that could be used to replace diseased cells of a tissue. The efficient cryopreservation of hESCs is important for establishing effective stem cell banks, however, conventional slow freezing methods usually lead to low rates of recovery after thawing cells and their replating in culture. We have established a method for recovering cryopreserved hESCs using pinacidil and compared it to a method that employs the ROCK inhibitor Y-27632. We show that pinacidil is similar to Y-27632 in promoting survival of hESCs after cryopreservation. The cells exhibited normal hESC morphology, retained a normal karyotype, and expressed characteristic hESC markers (OCT4, SSEA3, SSEA4 and TRA-1-60). Moreover, the cells retained the capacity to differentiate into derivatives of all three embryonic germ layers as demonstrated by differentiation through embryoid body formation. Pinacidil has been used for many years as a vasodilator drug to treat hypertension and its manufacture and traceability are well defined. It is also considerably cheaper than Y-27632. Thus, the use of pinacidil offers an efficient method for recovery of cryopreserved dissociated human ES cells.  相似文献   

18.
目的:比较通过慢病毒方法获得的人诱导多能性干细胞(iPSCs)与人胚胎干细胞(hESCs)分化过程中全能性基因Oct4、Nanog的表达变化。方法:收集分化不同时间点的拟胚体(EBs),检测三胚层分化基因以及全能性基因Oct4/Nanog的表达,并通过畸胎瘤组织切片的荧光染色分析Oct4的表达。结果:iPSCs获得的EB中内外三胚层分化基因表达的出现明显晚于hESCs来源的EB。不同于hESCs,iPSCs悬浮培养获得的EBs在体外培养18天未见内源性Oct4、Nanog基因表达的下调。未分化的iPSCs注射严重联合免疫缺陷(SCID)小鼠培养10周后获得的畸胎瘤中仍存在Oct4阳性的细胞,但iPS-#2中明显少于iPS-#5。结论:通过慢病毒方法获得的iPSCs虽然具有向三胚层分化的能力,但在分化过程中仍维持较高水平的全能性基因Oct4、Nanog的表达。  相似文献   

19.
Human pluripotent stem cells (PSCs) have been utilized as a promising source in regenerative medicine. However, the risk of teratoma formation that comes with residual undifferentiated PSCs in differentiated cell populations is most concerning in the clinical use of PSC derivatives. Here, we report that a monoclonal antibody (mAb) targeting PSCs could distinguish undifferentiated PSCs, with potential teratoma-forming activity, from differentiated PSC progeny. A panel of hybridomas generated from mouse immunization with H9 human embryonic stem cells (hESCs) was screened for ESC-specific binding using flow cytometry. A novel mAb, K312, was selected considering its high stem cell-binding activity, and this mAb could bind to several human induced pluripotent stem cells and PSC lines. Cell-binding activity of K312 was markedly decreased as hESCs were differentiated into embryoid bodies or by retinoic acid treatment. In addition, a cell population negatively isolated from undifferentiated or differentiated H9 hESCs via K312 targeting showed a significantly reduced expression of pluripotency markers, including Oct4 and Nanog. Furthermore, K312-based depletion of pluripotent cells from differentiated PSC progeny completely prevented teratoma formation. Therefore, our findings suggest that K312 is utilizable in improving stem cell transplantation safety by specifically distinguishing residual undifferentiated PSCs.  相似文献   

20.
Recent advances in human embryonic stem cell (hESC) biology now offer an alternative cell source for tissue engineers, as these cells are capable of proliferating indefinitely and differentiating to many clinically relevant cell types. Novel culture methods capable of exerting spatial and temporal control over the stem cell microenvironment allow for more efficient expansion of hESCs, and significant advances have been made toward improving our understanding of the biophysical and biochemical cues that direct stem cell fate choices. Effective production of lineage specific progenitors or terminally differentiated cells enables researchers to incorporate hESC derivatives into engineered tissue constructs. Here, we describe current efforts using hESCs as a cell source for tissue engineering applications, highlighting potential advantages of hESCs over current practices as well as challenges which must be overcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号