首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-like growth factor-I (IGF-I) is a survival factor for preimplantation mammalian embryos exposed to stress. One stress that compromises preimplantation embryonic development is elevated temperature (i.e., heat shock). Using bovine embryos produced in vitro as a model, it was hypothesized that IGF-I would protect preimplantation embryos by reducing the effects of heat shock on total cell number, the proportion of blastomeres that undergo apoptosis, and the percentage of embryos developing to the blastocyst stage. In experiment 1, embryos were cultured with or without IGF-I; on Day 5 after insemination, embryos >or=16 cells were cultured at 38.5 degrees C for 24 h or were subjected to 41 degrees C for 9 h followed by 38.5 degrees C for 15 h. Heat shock reduced the total cell number at 24 h after initiation of heat shock and increased the percentage of blastomeres that were apoptotic. Effects of heat shock were less for IGF-I-treated embryos. Experiment 2 was conducted similarly except that embryos were allowed to develop to Day 8 after insemination. The percentage reduction in blastocyst development for heat-shocked embryos compared with those maintained at 38.5 degrees C was less for embryos cultured with IGF-I than for control embryos. Heat shock reduced the total cell number in blastocysts and increased the percentage of blastomeres that were apoptotic, whereas IGF-I-treated embryos had increased total cell number and a reduced percentage of apoptosis. Taken together, these results demonstrate that IGF-I can serve as a survival factor for preimplantation bovine embryos exposed to heat shock by reducing the effects of heat shock on development and apoptosis.  相似文献   

2.
Preimplantation embryos exposed to elevated temperatures have reduced developmental competence. The involvement of reactive oxygen species in these effects has been controversial. Here we tested hypotheses that (1) heat shock effects on development and apoptosis would be greater when embryos were cultured in a high oxygen environment (air; oxygen concentration = approximately 20.95%, v/v) than in a low oxygen environment (5% oxygen) and (2) that these effects would be reversed by addition of the antioxidant dithiothreitol (DTT). Heat shock of 41 degrees C for 9 hr reduced development of two-cell embryos and Day 5 embryos to the blastocyst stage embryos when in high oxygen. There was no effect of heat shock on development when embryos were in low oxygen. Furthermore, induction of TUNEL-positive cells in Day 5 embryos by heat shock only occurred when embryos were in high oxygen. Addition of DTT to two-cell embryos either did not reduce effects of a heat shock of 41 degrees C for 15 hr on development or caused slight protection only. In contrast, treatment of Day 5 embryos with DTT reduced effects of heat shock on development and apoptosis. In summary, oxygen tension was shown to be a major determinant of the effects of heat shock on development and apoptosis in preimplantation bovine embryos. Protective effects of the antioxidant DTT were stage specific and more pronounced at later stages of development.  相似文献   

3.
Embryonic cell number in miniature pigs inbred for specific SLA haplotypes (a, c, and d) was determined on Day 6 by nuclear staining and, on Days 9 and 11, by DNA analyses (first day of oestrus = Day 0). Pigs exhibiting first behavioural oestrus at 08:00 h were hand-mated to an SLA homozygous boar 12 and 24 h later. Numbers of embryos flushed from uteri at 08:00-10:00 h on Days 6, 9 and 11 were greater (P less than 0.05) for SLAd females than for SLAa or SLAc females, which did not differ (8.2 vs 6.8 and 6.2, respectively). Recovery rates (embryos recovered/CL number) were similar, averaging 75.8% for all three SLA haplotypes. Embryos from SLAd dams contained fewer blastomeres (23 cells) on Day 6 than did embryos from SLAa (89 cells) or SLAc (79 cells) females. The reduced cell numbers of SLAd vs SLAa or SLAc embryos continued to Day 9 (28 vs 107 and 67 ng DNA/embryo) and Day 11 (167 vs 674 and 586 ng DNA/embryo). These results suggest an effect of the SLA complex on preimplantation embryonic development.  相似文献   

4.
Heat shock compromises development of preimplantation bovine embryos and the percentage of blastomeres labeled as TUNEL-positive. It was hypothesized that TUNEL labeling represents apoptosis and that apoptosis after heat shock is beneficial for continued embryonic development. To test these hypotheses, experiments were performed with z-DEVD-fmk, an inhibitor of group II caspases, on heat shock responses of embryos > or =16-cell stage at day 4 after insemination. Heat shock of 41 degrees C for 9 h increased group II caspase activity and the proportion of TUNEL positive cells; z-DEVD-fmk blocked these effects. The reduction in development of embryos exposed to heat shock for 6-9 h was magnified in the presence of z-DEVD-fmk. Results indicate that group II caspases mediate heat-induced apoptosis in bovine embryos and that inhibition of these caspases has a detrimental effect on embryonic resistance to heat shock. Apoptosis can be viewed as an adaptative mechanism to allow embryonic survival and development following stress.  相似文献   

5.
Apoptosis is a form of cell death that can function to eliminate cells damaged by environmental stress. One stress that can compromise embryonic development is elevated temperature (i.e., heat shock). For the current studies, we hypothesized that heat shock induces apoptosis in bovine embryos in a developmentally regulated manner. Studies were performed to 1) determine whether heat shock can induce apoptosis in preimplantation embryos, 2) test whether heat-induced apoptosis is developmentally regulated, 3) evaluate whether heat shock-induced changes in caspase activity parallel patterns of apoptosis, and 4) ascertain whether exposure to a mild heat shock can protect embryos from heat-induced apoptosis. As determined by TUNEL reaction, exposure of bovine embryos > or =16 cells on Day 5 after insemination to 41 or 42 degrees C for 9 h increased the percentage of cells undergoing apoptosis. In addition, there was a duration-dependent increase in the proportion of blastomeres that were apoptotic when embryos were exposed to temperatures of 40 or 41 degrees C, which are more characteristic of temperatures experienced by heat-stressed cows. Heat shock also increased caspase activity in Day 5 embryos. However, heat shock did not induce apoptosis in 2- or 4-cell embryos, nor did it increase caspase activity in 2-cell embryos. The apoptotic response of 8- to 16-cell-stage bovine embryos to heat shock depended upon the day after insemination that heat shock occurred. When 8- to 16-cell embryos were collected on Day 3 after insemination, heat shock of 41 degrees C for 9 h did not induce apoptosis. In contrast, when 8- to 16-cell embryos were collected on Day 4 after insemination and exposed to heat shock, there was an increase in the percentage of cells undergoing apoptosis. Exposure of 8- to 16-cell embryos at Day 4 to a mild heat shock of 40 degrees C for 80 min blocked the apoptotic response to a subsequent, more-severe heat shock of 41 degrees C for 9 h. In conclusion, apoptosis is a developmentally acquired phenomenon that occurs in embryos exposed to elevated temperature, and it can be prevented by induced thermotolerance.  相似文献   

6.
7.
This study was undertaken to obtain specific information on the characteristics of spontaneous and induced apoptosis during preimplantation development of rabbit in vivo and in vitro developed embryos and mouse in vitro embryos. After reaching appropriate developmental stages, embryos were transferred into culture media with or without apoptotic inductor (actinomycin D 500 ng/mL) and cultured for 10 h. The identification of apoptotic cells was based on morphological assessment of nuclei and on detection of specific DNA degradation, phosphatidylserine redistribution and active caspase-3 under fluorescence microscope. Our experiments proved that apoptosis is a frequent physiological event occurring during normal preimplantation development. A high number of untreated rabbit and mouse blastocysts contained at least one apoptotic cell. Rabbit embryos showed a lower incidence of spontaneous apoptosis. Treated blastocysts of both species responded to the presence of apoptotic inductor by significant decrease in the average number of blastomeres and significant increase in the incidence of apoptotic cell death. The occurrence of spontaneous apoptosis during earlier preimplantation development was sporadic and its presence was observed only at stages following embryonic genome activation (at 4-cell stage and later in mouse, at 16-cell and morula stage in rabbit). The susceptibility of embryos at early stages to the apoptotic inductor was much lower. The presence of actinomycin D did not increase the incidence of apoptotic embryos or apoptotic cells. Nevertheless, it slowed down embryo growth and triggered earlier appearance of some apoptotic features (at the 6-cell stage in rabbit). The results show that the occurrence of both spontaneous and induced apoptosis in preimplantation embryos is stage- and species-specific.  相似文献   

8.
9.
《Theriogenology》2008,69(9):1271-1281
This study was undertaken to obtain specific information on the characteristics of spontaneous and induced apoptosis during preimplantation development of rabbit in vivo and in vitro developed embryos and mouse in vitro embryos. After reaching appropriate developmental stages, embryos were transferred into culture media with or without apoptotic inductor (actinomycin D 500 ng/mL) and cultured for 10 h. The identification of apoptotic cells was based on morphological assessment of nuclei and on detection of specific DNA degradation, phosphatidylserine redistribution and active caspase-3 under fluorescence microscope.Our experiments proved that apoptosis is a frequent physiological event occurring during normal preimplantation development. A high number of untreated rabbit and mouse blastocysts contained at least one apoptotic cell. Rabbit embryos showed a lower incidence of spontaneous apoptosis. Treated blastocysts of both species responded to the presence of apoptotic inductor by significant decrease in the average number of blastomeres and significant increase in the incidence of apoptotic cell death. The occurrence of spontaneous apoptosis during earlier preimplantation development was sporadic and its presence was observed only at stages following embryonic genome activation (at 4-cell stage and later in mouse, at 16-cell and morula stage in rabbit). The susceptibility of embryos at early stages to the apoptotic inductor was much lower. The presence of actinomycin D did not increase the incidence of apoptotic embryos or apoptotic cells. Nevertheless, it slowed down embryo growth and triggered earlier appearance of some apoptotic features (at the 6-cell stage in rabbit). The results show that the occurrence of both spontaneous and induced apoptosis in preimplantation embryos is stage- and species-specific.  相似文献   

10.
Insulin-like growth factor (IGF-I) has been implicated as a thermoprotective molecule for the preimplantation bovine embryo. Here, it was shown that effects of heat shock (41 degrees C for 15 hr) on induction of apoptosis and reduction in cell number in bovine embryos collected at Day 5 after fertilization were blocked by addition of 100 ng/ml IGF-I at the initiation of heat shock. This action of IGF-I to block heat shock-induced apoptosis was eliminated if embryos were cultured with either a phosphatidylinositol 3-kinase (PI3K) inhibitor (wortmannin) or an Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-o-methyl-3-o-octadecylcarbonate). Immunofluorescence microscopy confirmed the expression of phosphorylated Akt for IGF-I and control embryos. Immunoblotting using an antibody to Akt (phospho S473) indicated increased phosphorylation of Akt in IGF-I-treated embryos. In conclusion, short-term treatment of embryos with IGF-I can block induction of apoptosis caused by heat shock through signaling events requiring PI3K and Akt.  相似文献   

11.
This study was undertaken to obtain information about characteristics of different types of induced apoptosis in preimplantation embryos. Freshly isolated mouse blastocysts were cultured in vitro with the addition of two apoptotic inductors--TNFalpha and actinomycin D--at various doses and times. The average number of nuclei and the percentage of dead cells were evaluated in treated embryos. Classification of dead cells was based on morphological assessment of their nuclei evaluated by fluorescence microscopy, the detection of specific DNA degradation (TUNEL assay), the detection of active caspase-3 and cell viability assessed by propidium iodide staining. The addition of both apoptotic inductors into culture media significantly increased cell death incidence in blastocysts. Their effects were dose and time dependent. Lower concentrations of inductors increased cell death incidence, usually without affecting embryo growth after 24 h culture. Higher concentrations of inductors caused wider cell damage and also retarded embryo development. In all experiments, the negative effect of actinomycin D on blastomere survival and blastocyst growth was greater than the effect of TNFalpha. Furthermore, the addition of actinomycin D into culture media increased cell death incidence even after 6 h culture. Differences resulted probably from diverse specificity of apoptotic inductors. The majority of dead cells in treated blastocysts were of apoptotic origin. Morphological and biochemical features of apoptotic cell death induced by both TNFalpha and actinomycin D were similar and had homologous profile. In blastomeres, similarly to somatic cells, the biochemical pathways of induced apoptosis included activation of caspase-3 and internucleosomal DNA fragmentation.  相似文献   

12.
Ceramide, a biologically active sphingolipid in cell death signaling, accumulates upon CD95L treatment, concomitantly to apoptosis induction in Jurkat leukemia T cells. Herein, we show that ceramide did not increase in caspase-8 and -10-doubly deficient Jurkat cells in response to CD95L, indicating that apical caspases are essential for CD95L-triggered ceramide formation. Jurkat cells are typically defined as type 2 cells, which require the activation of the mitochondrial pathway for efficient apoptosis induction in response to CD95L. Caspase-9-deficient Jurkat cells significantly resisted CD95L-induced apoptosis, despite ceramide accumulation. Knock-down of sphingomyelin synthase 1, which metabolizes ceramide to sphingomyelin, enhanced (i) CD95L-triggered ceramide production, (ii) cytochrome c release from the mitochondria and (iii) caspase-9 activation. Exogenous ceramide-induced caspase-3 activation and apoptosis were impaired in caspase-9-deficient Jurkat cells. Conversely, caspase-9 re-expression in caspase-9-deficient Jurkat cells restored caspase-3 activation and apoptosis upon exogenous ceramide treatment. Collectively, our data provide genetic evidence that CD95L-triggered endogenous ceramide increase in Jurkat leukemia T cells (i) is not a mere consequence of cell death and occurs mainly in a caspase-9-independent manner, (ii) is likely involved in the pro-apoptotic mitochondrial pathway leading to caspase-9 activation.  相似文献   

13.
In this article, we review the role of sphingomyelinases and ceramide in the Fas-mediated apoptosis signal transduction cascade. Several stimuli, including ligation of Fas, have been shown to enhance either neutral and/or acidic sphingomyelinase activity and increase ceramide content in intact cells or cell membrane preparations. Ceramide seems to have different functions, including induction of apoptosis, growth arrest, and/or differentiation, depending on cell type or location of sphingomyelin hydrolysis within the cell. Several putative targets for ceramide activity, including a kinase and a phosphatase, have also been identified. While ceramide and acidic sphingomyelinase activity appear to be involved in apoptotic signalling for Fas and other members of the tumour necrosis factor receptor family, it is clear that other signals and mechanisms are necessary for Fas-mediated apoptosis.  相似文献   

14.
Within 24 hr after oral administration of the antimalarial artesunate to rats on Day 10 or 11 postcoitum (pc), there is depletion of embryonic erythroblasts (EEbs), leading to embryo malformation and death. The proximate agent is dihydroartemisinin (DHA), the primary metabolite. We investigated the causes of EEb depletion by evaluating effects of DHA on EEbs in whole embryo culture (WEC). Rat embryos cultured starting on Day 9 pc were treated with 1 or 7 μM DHA for 24 hr starting after 19 hr of culture (~Day 10 pc) and for 2 to 12 hr starting after 43 hr of culture (~Day 11 pc). DHA effects indicating the depletion of EEbs were paling of the visceral yolk sac and reductions in visible blood cells, H&E‐stained normal (Type II or III) EEbs, and dividing (BrdU‐stained) EEbs. DHA‐induced abnormal cell division was indicated by increases in symmetric and asymmetric binuclear cells. DHA‐induced apoptosis was indicated by increases in TUNEL‐ and Caspase‐3‐positive cells and EEbs with fragmented nuclei. In addition, although the overall number of EEbs was decreasing, DHA caused increases in the numbers of circulating early‐stage (Type I or earlier) EEbs that could not be accounted for by cell division, suggesting the release of new, less sensitive erythroblasts from the yolk sac. In summary, treatment of Day 10 or 11 pc rat embryos with DHA in WEC resulted in defective and arrested cell division in EEbs followed by apoptosis, suggesting a mechanism for their depletion after artesunate treatment in vivo.  相似文献   

15.
In this study we investigated chronological onset and involvement of active caspase-3, apoptotic nuclear morphology, and TUNEL-labeling, as well as ultrastructural evidence of apoptosis, in both spontaneous and induced cell death during pre-implantation development of bovine in vitro produced embryos. Pre-implantation embryos (2-cell to Day 8 blastocysts) were cultured with either no supplementation (untreated) or with 10 microM staurosporine for 24 hr (treated). Embryos were subjected to immunohistochemical staining of active caspase-3, TUNEL-reaction for detection of DNA degradation and DAPI staining for detection of apoptotic nuclear morphology, and subjected to fluorescence microscopy. Additionally, treated and untreated blastocysts were fixed and processed for ultrastructural identification of apoptosis. Untreated embryos revealed no apoptotic features at 2- and 4-cell stages. However, active caspase-3 and apoptotic nuclear morphology were observed in an untreated 8-cell stage, and TUNEL-labeling was observed from the 16-cell stage. Blastomeres concurrently displaying all apoptotic features were present in a few embryos at 16-cell and morula stages and in all blastocysts. All three features were observed from the 8-cell stage in treated embryos, and blastomeres with apoptotic features appeared more numerous in treated than in untreated embryos. Ultrastructural evidence of apoptosis occurred with a comparable distribution pattern as apoptotic features detected by fluorescence microscopy in both treated and untreated blastocysts. Activation of caspase-3 is likely involved in both spontaneous and induced apoptosis in bovine pre-implantation embryos, and immunohistochemical staining of active caspase-3 may be used in combination with other markers to identify apoptosis in pre-implantation embryos.  相似文献   

16.
Factors affecting the production of platelet activating factor (PAF) by mouse embryos during culture in vitro were investigated. Detectable levels of embryo-derived PAF were produced within 1-4 hr with maximum PAF activity being observed after 6 hr of culture in vitro. The amount of PAF detected in media after 24 hr of culture of two-cell embryos was equivalent to 12.8 ng PAF/embryo. However, differences in activity were apparent with increased time in culture. Reduced synthesis of PAF during culture in vitro was supported by the observation that morulae stage embryos collected fresh from the reproductive tract displayed more PAF activity than morulae resulting from the 48 hr culture of two-cell embryos. In addition to determining production characteristics of PAF by embryos, we also show that the production of CO2 from carbon-1 position of lactate is positively correlated with the ability of embryos to develop during subsequent culture in vitro and therefore could be used as a measure of embryo viability. Furthermore, culture of embryos in media supplemented with PAF resulted in an increase in lactate utilization demonstrating a direct effect of PAF on the embryo. As PAF is produced by preimplantation embryos, an autocoid role of PAF in regulating embryo development is implicated. Therefore, the reduced production of PAF by embryos in vitro may explain the decreased viability of embryos commonly observed following their culture in vitro.  相似文献   

17.
18.
Etoposide (VP-16) a topoisomerase II inhibitor induces apoptosis of tumor cells. The present study was designed to elucidate the mechanisms of etoposide-induced apoptosis in C6 glioma cells. Etoposide induced increased formation of ceramide from sphingomyelin and release of mitochondrial cytochrome c followed by activation of caspase-9 and caspase-3, but not caspase-1. In addition, exposure of cells to etoposide resulted in decreased expression of Bcl-2 with reciprocal increase in Bax protein. z-VAD.FMK, a broad spectrum caspase inhibitor, failed to suppress the etoposide-induced ceramide formation and change of the Bax/Bcl-2 ratio, although it did inhibit etoposide-induced death of C6 cells. Reduced glutathione or N-acetylcysteine, which could reduce ceramide formation by inhibiting sphingomyelinase activity, prevented C6 cells from etoposide-induced apoptosis through blockage of caspase-3 activation and change of the Bax/Bcl-2 ratio. In contrast, the increase in ceramide level by an inhibitor of ceramide glucosyltransferase-1, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol caused elevation of the Bax/Bcl-2 ratio and potentiation of caspase-3 activation, thereby resulting in enhancement of etoposide-induced apoptosis. Furthermore, cell-permeable exogenous ceramides (C2- and C6-ceramide) induced downregulation of Bcl-2, leading to an increase in the Bax/Bcl-2 ratio and subsequent activation of caspases-9 and -3. Taken together, these results suggest that ceramide may function as a mediator of etoposide-induced apoptosis of C6 glioma cells, which induces increase in the Bax/Bcl-2 ratio followed by release of cytochrome c leading to caspases-9 and -3 activation.  相似文献   

19.
Sequential culture and coculture are two methods of improving the development of preimplantation embryos in vitro. Direct comparison of the efficiency of these methods is limited. Proliferation and apoptosis determine the total number of blastomere in preimplantation embryo, which is a sensitive parameter for evaluation of the development of embryo in vitro. In this study, we compared the proliferation and apoptosis of mouse embryo in different culture media, including CZB, KSOM, MTF, G1.2/G2.2 sequential culture media, and in human oviductal cell coculture. Sequential culture using G1.2/G2.2 was superior to KSOM, MTF, and CZB/CZB + G with respect to the formation of 3-4 cell embryos, morula, and blastocyst. G1.2/G2.2 cultured blastocyst had significantly more proliferating blastomeres and higher total cell number per blastocyst than those cultured in KSOM or CZB/CZB + G. Compared to embryos cultured in G1.2/G2.2, embryos cocultured in G1.2/G2.2 hatched more frequently. Cocultured blastocysts also had significantly higher percentage of proliferating cell and lower percentage of apoptotic cell per blastocyst than those cultured in G1.2/G2.2. It was concluded that G1.2/G2.2 facilitated the proliferation of blastomere whilst human oviductal cell coculture suppressed apoptosis in addition to stimulating proliferation of blastomere.  相似文献   

20.
Sex-related growth rate differences in preimplantation mouse embryos were investigated. In experiment I, Day 3 embryos were recovered from reproductive tracts, classified according to developmental stage, and cultured for 24 hr in CZB medium containing glucose. Each embryo was then reclassified and stained for measurement of number of nuclei and finally sexed using the polymerase chain reaction. In experiment II, Day 4 embryos were recovered, classified, stained, and sexed as in experiment I immediately after recovery. Morphologically, there were no differences between the sexes in either of the experiments on Day 4. However, based on number of nuclei, the data showed that in vitro conditions support the development of male embryos to the blastocyst stage compared to female embryos. Furthermore, growth rate differences were observed in vivo on Day 3, as females compacted earlier than males. These results suggest that the increased cell proliferation in cultured male embryos is an artifact caused by the in vitro environment. The variation may be due to sex differences in embryonal energy metabolism during the preimplantation stage. The growth difference implies different in vitro requirements of male and female embryos. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号