首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genome of the diurnal cyanobacterium Cyanothece sp. PCC 51142 has recently been sequenced and observed to contain 35 pentapeptide repeat proteins (PRPs). These proteins, while present throughout the prokaryotic and eukaryotic kingdoms, are most abundant in cyanobacteria. The sheer number of PRPs in cyanobacteria coupled with their predicted location in every cellular compartment argues for important, yet unknown, physiological and biochemical functions. To gain biochemical insights, the crystal structure for Rfr32, a 167-residue PRP with an N-terminal 29-residue signal peptide, was determined at 2.1 A resolution. The structure is dominated by 21 tandem pentapeptide repeats that fold into a right-handed quadrilateral beta-helix, or Rfr-fold, as observed for the tandem pentapeptide repeats in the only other PRP structure, the mycobacterial fluoroquinoline resistance protein MfpA from Mycobacterium tuberculosis. Sitting on top of the Rfr-fold are two short, antiparallel alpha-helices, bridged with a disulfide bond, that perhaps prevent edge-to-edge aggregation at the C terminus. Analysis of the main-chain (Phi,Psi) dihedral orientations for the pentapeptide repeats in Rfr32 and MfpA makes it possible to recognize the structural details for the two distinct types of four-residue turns adopted by the pentapeptide repeats in the Rfr-fold. These turns, labeled type II and type IV beta-turns, may be universal motifs that shape the Rfr-fold in all PRPs.  相似文献   

2.
Pentapeptide repeat proteins (PRPs) represent a large superfamily with more than 38 000 sequences in nearly 3500 species, the majority belonging to cyanobacteria but represented among all branches of life. PRPs contain at least eight consecutive pentapeptide repeats with the consensus (A/C/S/V/T/L/I)(D/N/S/K/E/I/R)(L/F)(S/T/R/E/Q/K/V/D)(G/D/E/N/R/Q/K). PRPs fold into right-handed quadrilateral β helices, also known as repeat-five-residue (Rfr)-folds, with four consecutive pentapeptide repeats comprising a single coil, the ~90° change in polypeptide direction in square-shaped coils achieved by type I, II and IV β turns, and hydrogen bonds between coils establishing β ladders on each Rfr-fold face. PRPs are broadly categorized into group 1 and 2 involved in antibiotic resistance and group 3 currently having unknown functions. Motivated by their intriguing structures, we are investigating PRP biophysical characteristics, including Rfr-fold thermal stability, β turn and β ladder hydrogen bond amide exchange rates and backbone dynamics. Here, we present analysis of 20 ns molecular dynamics (MD) simulations and all atom normal mode analysis (aaNMA) calculations for four group 1 and group 2 and four group 3 PRPs whose structures have been determined by X-ray crystallography. The MD cross-correlation matrices and aaNMA indicated strong correlated motion between adjacent coils and weak coupled motion between coils separated by one or more intervening coils. Slow anticorrelated motions were detected between adjacent coils in aaNMA modes that we hypothesize are requisite to access exchange-competent states necessary to permit solvent exchange of amide hydrogens involved in β-ladder and β-turns hydrogen bonds, which can have lifetimes on the order of months.  相似文献   

3.
Structure and distribution of pentapeptide repeats in bacteria.   总被引:14,自引:1,他引:13       下载免费PDF全文
We report the discovery of a novel family of proteins, each member contains tandem pentapeptide (five residue) repeats, described by the motif A(D/N)LXX. Members of this family are both membrane bound and cytoplasmic. The function of these repeats is uncertain, but they may have a targeting or structural function rather than enzymatic activity. This family is most common in cyanobacteria, suggesting a function related to cyanobacterial-specific metabolism. Although no experimental information is available for the structure of this family, it is predicted that the tandem pentapeptide repeats will form a right-handed beta-helical structure. A structural model of the pentapeptide repeats is presented.  相似文献   

4.
Nostoc sp. PCC 7120 are filamentous cyanobacteria capable of both oxygenic photosynthesis and nitrogen fixation, with the latter taking place in specialized cells known as heterocysts that terminally differentiate from vegetative cells under conditions of nitrogen starvation. Cyanobacteria have existed on earth for more than 2 billion years and are thought to be responsible for oxygenation of the earth's atmosphere. Filamentous cyanobacteria such as Nostoc sp. PCC 7120 may also represent the oldest multicellular organisms on earth that undergo cell differentiation. Pentapeptide repeat proteins (PRPs), which occur most abundantly in cyanobacteria, adopt a right-handed quadrilateral β-helical structure, also referred to as a repeat five residue (Rfr) fold, with four-consecutive pentapeptide repeats constituting a single coil in the β-helical structure. PRPs are predicted to exist in all compartments within cyanobacteria including the thylakoid and cell-wall membranes as well as the cytoplasm and thylakoid periplasmic space. Despite their intriguing structure and importance to understanding ancient cyanobacteria, the biochemical function of PRPs in cyanobacteria remains largely unknown. Here we report the crystal structure of Alr1298, a PRP from Nostoc sp. PCC 7120 predicted to reside in the cytoplasm. The structure displays the typical right-handed quadrilateral β-helical structure and includes a four-α-helix cluster capping the N-terminus and a single α-helix capping the C-terminus. A gene cluster analysis indicated that Alr1298 may belong to an operon linked to cell proliferation and/or thylakoid biogenesis. Elevated alr1298 gene expression following nitrogen starvation indicates that Alr1298 may play a role in response to nitrogen starvation and/or heterocyst differentiation.  相似文献   

5.
The location of 16 of the 18 disulfide bonds in human plasma prekallikrein was determined by amino acid sequence analysis of cystinyl peptides produced by chemical and enzymatic digestions. A unique structure, named the apple domain, was established for each of the four tandem repeats in the amino-terminal portion of the molecule. The apple domains (90 or 91 amino acids) contain 3 highly conserved disulfide bonds linking the first and sixth, second and fifth, and third and fourth half-cystine residues present in each repeat. The fourth tandem repeat contains an extra disulfide bond that forms a second small loop within the apple domain. The carboxyl-terminal portion of plasma prekallikrein containing the catalytic region of the molecule was found to have disulfide bonds located in positions similar to those of other serine proteases.  相似文献   

6.
7.
8.
9.
The Nostoc punctiforme genes Np275 and Np276 are two adjacently encoded proteins of 98 and 75 amino acids in length and exhibit sequences composed of tandem pentapeptide repeats. The structures of Np275 and a fusion of Np275 and Np276 were determined to 2.1 and 1.5 A, respectively. The two Nostoc proteins fold as highly symmetric right-handed quadrilateral beta-helices similar to the mycobacterial protein MfpA implicated in fluoroquinolone resistance and DNA gyrase inhibition. The sequence composition of the intervening coding region and the ability to express a fused protein by removing the stop codon for Np275 suggests Np275 and Np276 were recently part of a larger ancestral pentapeptide repeat protein.  相似文献   

10.
Two forms of small, interstitial proteoglycans have been isolated from bovine articular cartilage and have different core proteins, based on NH2-terminal analysis and peptide mapping (Choi, H. U., Johnson, T. L., Pal, S., Tang, L-H., Rosenberg, L. C., and Neame, P. J. (1989) J. Biol. Chem. 264, 2876-2884). These proteoglycans have been called PG I and PG II. Since they were first described, they have also been called "biglycan" (PG I), "decorin," and "DS-PG" (PG II). This report describes the primary structure of PG I from bovine articular cartilage. The protein core consists of 331 amino acids with a molecular mass of 37,280 Da. The amino acid sequence shows 55% identity to the cDNA-derived sequence of PG II from bovine bone. There are four discrete domains in the amino acid sequence. Domain 1, at the NH2 terminus (approximately 23 amino acids), contains two sites of attachment of dermatan sulfate, both of which match the consensus sequence of Asp/Glu-X-X-Ser-Gly-hydrophobic. Neither of these sites is substituted to 100% with glycosaminoglycan in native PG I. Domain 2, near the NH2 terminus and containing approximately 28 amino acids, has a cysteine pattern similar to a domain near the COOH terminus of mouse metallothionein and contains at least one disulfide bond (between the first and fourth cysteine residues). The majority of the core protein of PG I (domain 3) is a leucine-rich domain containing ten repeating units (approximately 231 amino acids). Patthy [1987) J. Mol. Biol. 198, 567-577) has shown that for PG II, the majority of domain 3 shows considerable similarity to leucine-rich alpha 2-glycoprotein (LRG) from serum. Domain 2 of PG I or PG II also has an analog in LRG, in that it has two cysteines in a similar place. The major motif in the PG I described here, in PG II and in LRG, is a series of leucine-rich repeats. PG I and PG II both contain 10 leucine-rich repeats which are 14 amino acids long and which are somewhat irregularly spaced, while LRG contains 9 leucine-rich repeats spaced 10 amino acids apart. Other proteins which contain leucine repeats are the platelet glycoprotein Ib, which is involved in platelet adherence to subendothelium (eight repeats in the alpha chain and two in the beta chain), the protein encoded by the Toll gene (involved in lateral and ventral spatial organization in Drosophila) and chaoptin (a protein involved in Drosophila photoreceptor morphogenesis).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The nucleotide sequence of direct clustered repeats from the divergent region of the maxicircle kinetoplast (mitochondrial) DNA from the protozoan Crithidia oncopelti was analysed. 10 kbp long divergent region contains 3 clusters composed of 18-23 tandem repeats of 82-83 bp (Sau-repeats) and a single cluster of five 417 bp repeats (EcoRI-repeats). The clusters are interspersed between the regions of nonrepetitive DNA. The details of the structural organization of repeats and their clusters were considered on the nucleotide sequence level. The possible ways of origin of the clusters are discussed.  相似文献   

12.
Annexins, the Ca(2+)- and phospholipid-binding proteins, are able to induce Ca(2+)-dependent aggregation of biomembranes. All the representatives of this family contain four or eight tandem repeats, 60-80 amino acids each. All these repeats include a highly conservative 17-member amino acid consensus sequence (an endonexin fold). The central domain comprises all these repeats and contains, in addition, the site(s) with a binding affinity for Ca2+ and phospholipids. Annexins are devoid of the classical "EF-hand" Ca(2+)-binding domain and can therefore be assigned to a new family of Ca(2+)-binding proteins.  相似文献   

13.
The primary structure of a phospholipase A2, with unique structural and functional characteristics, was determined. The large subunit has 108 amino acid residues, linked by a disulfide bridge to the small subunit, which contains 17 residues. Its gene was cloned from a cDNA library. The nucleotide sequence showed that the same RNA messenger encodes both subunits, separated only by a pentapeptide, that is processed during maturation.  相似文献   

14.
The primary structure of a phospholipase A2, with unique structural and functional characteristics, was determined. The large subunit has 108 amino acid residues, linked by a disulfide bridge to the small subunit, which contains 17 residues. Its gene was cloned from a cDNA library. The nucleotide sequence showed that the same RNA messenger encodes both subunits, separated only by a pentapeptide, that is processed during maturation.  相似文献   

15.
The complete amino acid sequence of the macaque proline-rich phosphoglycoprotein (MPRP) was determined by automated Edman degradation of the protein, fragments F-1 and F-2 derived from the protein by an intrinsic salivary protease, and chymotryptic, tryptic, Staphylococcus aureus V8 protease, and endoproteinase lysine-C peptides. MPRP contains 115 amino acid residues including phosphorylated serine at residues 1, 2, 6, 12, and 15, and 6 O-glycosidic carbohydrate units at residues 69, 75, 87 (threonine) and 96, 103, and 106 (serine). The Mr of the polypeptide moiety of the protein is 12,656. The amino-terminal domain contains all 5 phosphoserine residues and most of the other negatively charged and hydrophilic residues, whereas the carboxyl-terminal domain contains 24 of 25 proline residues, and 6 O-glycosidic oligosaccharides. Comparison of MPRP with the four major anionic proline-rich proteins (PRPs) from human glandular secretion shows that 57% of the amino acid residues are identical if gaps are introduced to maximize homology, suggesting that these proteins are phylogenetically related. Significant structural and functional differences occur between the macaque and human proteins. MPRP has 5 phosphoserines, PRPs have 2. MPRP is a glycoprotein, PRPs are not. MPRP inhibits the spontaneous precipitation (primary precipitation) of calcium phosphate salts from supersaturated solutions in addition to inhibiting seeded crystal growth (secondary precipitation) (Oppenheim, F. G., Offner, G. D., and Troxler, R. F. (1982) J. Biol. Chem. 257, 9271-9282), whereas PRPs inhibit only secondary precipitation. MPRP is the only major anionic proline-rich protein in macaque glandular secretion; in contrast, there are four major anionic PRPs and these display a genetic polymorphism. The significance of these structural differences with respect to biological function and the possible relationship of MPRP to salivary mucins are discussed.  相似文献   

16.
Proteins that share even low sequence homologies are known to adopt similar folds. The beta-propeller structural motif is one such example. Identifying sequences that adopt a beta-propeller fold is useful to annotate protein structure and function. Often, tandem sequence repeats provide the necessary signal for identifying beta-propellers in proteins. In our recent analysis to identify cell surface proteins in archaeal and bacterial genomes, we identified some proteins that contain novel tandem repeats "LVIVD", "RIVW" and "LGxL". In this work, based on protein fold predictions and three-dimensional comparative modeling methods, we predicted that these repeat types fold as beta-propeller. Further, the evolutionary trace analysis of all proteins constituting amino acid sequence repeats in beta-propellers suggest that the novel repeats have diverged from a common ancestor.  相似文献   

17.
We have determined the crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 at 1.9 A resolution. This protein is a member of the Escherichia coli ygcH sequence family, which contains approximately 15 sequence homologs of bacterial origin. These homologs have a high isoelectric point. The crystal structure reveals that TTHB192 consists of two independently folded domains, and that each domain exhibits a ferredoxin-like fold with a four-stranded antiparallel beta-sheet packed on one side by alpha-helices. These two tandem domains face each other to generate a beta-sheet platform. TTHB192 displays overall structural similarity to Sex-lethal protein and poly(A)-binding protein fragments. These proteins have RNA binding activity which is supported by a beta-sheet platform formed by two tandem repeats of an RNA recognition motif domain with signature sequence motifs on the beta-sheet surface. Although TTHB192 does not have the same signature sequence motif as the RNA recognition motif domain, the presence of an evolutionarily conserved basic patch on the beta-sheet platform could be functionally relevant for nucleic acid-binding. This report shows that TTHB192 and its sequence homologs adopt an RNA recognition motif-like domain and provides the first testable functional hypothesis for this protein family.  相似文献   

18.

Background

Many proteins with tandem repeats in their sequence have been described and classified according to the length of the repeats: I) Repeats of short oligopeptides (from 2 to 20 amino acids), including structural cell wall proteins and arabinogalactan proteins. II) Repeats that range in length from 20 to 40 residues, including proteins with a well-established three-dimensional structure often involved in mediating protein-protein interactions. (III) Longer repeats in the order of 100 amino acids that constitute structurally and functionally independent units. Here we analyse ShooT specific (ST) proteins, a family of proteins with tandem repeats of unknown function that were first found in Leguminosae, and their possible similarities to other proteins with tandem repeats.

Results

ST protein sequences were only found in dicotyledonous plants, limited to several plant families, mainly the Fabaceae and the Asteraceae. ST mRNAs accumulate mainly in the roots and under biotic interactions. Most ST proteins have one or several Domain(s) of Unknown Function 2775 (DUF2775). All deduced ST proteins have a signal peptide, indicating that these proteins enter the secretory pathway, and the mature proteins have tandem repeat oligopeptides that share a hexapeptide (E/D)FEPRP followed by 4 partially conserved amino acids, which could determine a putative N-glycosylation signal, and a fully conserved tyrosine. In a phylogenetic tree, the sequences clade according to taxonomic group. A possible involvement in symbiosis and abiotic stress as well as in plant cell elongation is suggested, although different STs could play different roles in plant development.

Conclusions

We describe a new family of proteins called ST whose presence is limited to the plant kingdom, specifically to a few families of dicotyledonous plants. They present 20 to 40 amino acid tandem repeat sequences with different characteristics (signal peptide, DUF2775 domain, conservative repeat regions) from the described group of 20 to 40 amino acid tandem repeat proteins and also from known cell wall proteins with repeat sequences. Several putative roles in plant physiology can be inferred from the characteristics found.  相似文献   

19.
A human gene and cDNA coding for a breast-cancer-associated antigen (H23Ag) were isolated and characterized. The gene contains two exons and one intron. Part of the second exon is a tandem repeat array (TRA) consisting of multiple 60-bp G + C-rich units. We report here the characterization of unique sequences that are found in the H23Ag gene and cDNA, in addition to the 60-bp repeats. Analysis of the cDNA sequences revealed a putative ATG start codon preceded by two overlapping initiation consensus sequences (CCACC). The open reading frame determines an amino acid (aa) sequence consisting of three regions. The first region contains an initiating methionine and a highly hydrophobic putative signal peptide. This is followed by a variable number of highly conserved 20-aa repeat units (TRA). The last region, C-terminal to TRA, contains four potential N-linked glycosylation sites. The genomic nucleotide sequences demonstrate a putative promoter region that includes a 'TATA' box. A putative estrogen regulatory element is located 5' to the promoter region. The characterization of the gene and cDNA coding for the H23Ag presented here, may help to elucidate its possible function in human breast cancer.  相似文献   

20.
PUF proteins are a conserved group of sequence specific RNA-binding proteins that bind to RNA in a modular fashion. The RNA-binding domain of PUF proteins typically consists of eight clustered Puf repeats. Plant genomes code for large families of PUF proteins that show significant variability in their predicted Puf repeat number, organization, and amino acid sequence. Here we sought to determine whether the observed variability in the RNA-binding domains of four plant PUFs results in a preference for nonclassical PUF RNA target sequences. We report the identification of a novel RNA binding sequence for a nucleolar Arabidopsis PUF protein that contains an atypical RNA-binding domain. The Arabidopsis PUM23 (APUM23) binding sequence was 10 nucleotides in length, contained a centrally located UUGA core element, and had a preferred cytosine at nucleotide position 8. These RNA sequence characteristics differ from those of other PUF proteins, because all natural PUFs studied to date bind to RNAs that contain a conserved UGU sequence at their 5′ end and lack specificity for cytosine. Gel mobility shift assays validated the identity of the APUM23 binding sequence and supported the location of 3 of the 10 predicted Puf repeats in APUM23, including the cytosine-binding repeat. The preferred 10-nucleotide sequence bound by APUM23 is present within the 18S rRNA sequence, supporting the known role of APUM23 in 18S rRNA maturation. This work also reveals that APUM23, an ortholog of yeast Nop9, could provide an advanced structural backbone for Puf repeat engineering and target-specific regulation of cellular RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号