首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Overactivation of certain K(+) channels can mediate excessive K(+) efflux and intracellular K(+) depletion, which are early ionic events in apoptotic cascade. The present investigation examined a possible role of the KCNQ2/3 channel or M-channel (also named Kv7.2/7.3 channels) in the pro-apoptotic process. Whole-cell recordings detected much larger M-currents (212 ± 31 pA or 10.5 ± 1.5 pA/pF) in cultured hippocampal neurons than that in cultured cortical neurons (47 ± 21 pA or 2.4 ± 0.8 pA/pF). KCNQ2/3 channel openers N-ethylmaleimide (NEM) and flupirtine caused dose-dependent K(+) efflux, intracellular K(+) depletion, and cell death in hippocampal cultures, whereas little cell death was induced by NEM in cortical cultures. The NEM-induced cell death was antagonized by co-applied KCNQ channel inhibitor XE991 (10 μM), or by elevated extracellular K(+) concentration. Supporting a mediating role of KCNQ2/3 channels in apoptosis, expression of KCNQ2 or KCNQ2/3 channels in Chinese hamster ovary (CHO) cells initiated caspase-3 activation. Consistently, application of NEM (20 μM, 8 h) in hippocampal cultures similarly caused caspase-3 activation assessed by immunocytochemical staining and western blotting. NEM increased the expression of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), induced mitochondria membrane depolarization, cytochrome c release, formation of apoptosome complex, and apoptosis-inducing factor (AIF) translocation into nuclear. All these events were attenuated by blocking KCNQ2/3 channels. These findings provide novel evidence that KCNQ2/3 channels could be an important regulator in neuronal apoptosis.  相似文献   

2.
Non-receptor-tyrosine kinases (protein-tyrosine kinases) and non-receptor tyrosine phosphatases (PTPs) have been implicated in the regulation of ion channels, neuronal excitability, and synaptic plasticity. We previously showed that protein-tyrosine kinases such as Src kinase and PTPs such as PTPα and PTPε modulate the activity of delayed-rectifier K(+) channels (I(K)). Here we show cultured cortical neurons from PTPε knock-out (EKO) mice to exhibit increased excitability when compared with wild type (WT) mice, with larger spike discharge frequency, enhanced fast after-hyperpolarization, increased after-depolarization, and reduced spike width. A decrease in I(K) and a rise in large-conductance Ca(2+)-activated K(+) currents (mBK) were observed in EKO cortical neurons compared with WT. Parallel studies in transfected CHO cells indicate that Kv1.1, Kv1.2, Kv7.2/7.3, and mBK are plausible molecular correlates of this multifaceted modulation of K(+) channels by PTPε. In CHO cells, Kv1.1, Kv1.2, and Kv7.2/7.3 K(+) currents were up-regulated by PTPε, whereas mBK channel activity was reduced. The levels of tyrosine phosphorylation of Kv1.1, Kv1.2, Kv7.3, and mBK potassium channels were increased in the brain cortices of neonatal and adult EKO mice compared with WT, suggesting that PTPε in the brain modulates these channel proteins. Our data indicate that in EKO mice, the lack of PTPε-mediated dephosphorylation of Kv1.1, Kv1.2, and Kv7.3 leads to decreased I(K) density and enhanced after-depolarization. In addition, the deficient PTPε-mediated dephosphorylation of mBK channels likely contributes to enhanced mBK and fast after-hyperpolarization, spike shortening, and consequent increase in neuronal excitability observed in cortical neurons from EKO mice.  相似文献   

3.
The precise subcellular localization of ion channels is often necessary to ensure rapid and efficient integration of both intracellular and extracellular signaling events. Recently, we have identified lipid raft association as a novel mechanism for the subcellular sorting of specific voltage-gated K(+) channels to regions of the membrane rich in signaling complexes. Here, we demonstrate isoform-specific targeting of voltage-gated K(+) (Kv) channels to distinct lipid raft populations with the finding that Kv1.5 specifically targets to caveolae. Multiple lines of evidence indicate that Kv1.5 and Kv2.1 exist in distinct raft domains: 1) channel/raft association shows differential sensitivity to increasing concentrations of Triton X-100; 2) unlike Kv2.1, Kv1.5 colocalizes with caveolin on the cell surface and redistributes with caveolin following microtubule disruption; and 3) immunoisolation of caveolae copurifies Kv1.5 channel. Both depletion of cellular cholesterol and inhibition of sphingolipid synthesis alter Kv1.5 channel function by inducing a hyperpolarizing shift in the voltage dependence of activation and inactivation. The differential targeting of Kv channel subtypes to caveolar and noncaveolar rafts within a single membrane represents a unique mechanism of compartmentalization, which may permit isoform-specific modulation of K(+) channel function.  相似文献   

4.
Tumor cell membranes have multiple components that participate in the process of metastasis. The present study investigates the physical association of beta1-integrins and Kv1.3 voltage-gated potassium channels in melanoma cell membranes using resonance energy transfer (RET) techniques. RET between donor-labeled anti-beta1-integrin and acceptor-labeled anti-Kv1.3 channels was detected on LOX cells adherent to glass and fibronectin-coated coverslips. However, RET was not observed on LOX cells in suspension, indicating that molecular proximity of these membrane molecules is adherence-related. Several K(+) channel blockers, including tetraethylammonium, 4-aminopyridine, and verapamil, inhibited RET between beta1-integrins and Kv1.3 channels. However, the irrelevant K(+) channel blocker apamin had no effect on RET between beta1-integrins and Kv1.3 channels. Based on these findings, we speculate that the lateral association of Kv1.3 channels with beta1-integrins contributes to the regulation of integrin function and that channel blockers might affect tumor cell behavior by influencing the assembly of supramolecular structures containing integrins.  相似文献   

5.
M-channels are voltage-gated potassium channels that regulate cell excitability. They are heterotetrameric assemblies of Kv7.2 and Kv7.3 subunits. Their opening requires the presence of the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)). However, the specificity of PI(4,5)P(2) as a binding and activating ligand is unknown. Here, we tested the ability of different phosphoinositides and lipid phosphates to activate or bind to M-channel proteins. Activation of functional channels was measured in membrane patches isolated from cells coexpressing Kv7.2 and Kv7.3 subunits. Channels were activated to similar extents (maximum open probability of ~0.8 at 0 mV) by 0.1-300 μM dioctanoyl homologs of the three endogenous phosphoinositides, PI(4)P, PI(4,5)P(2), and PI(3,4,5)P(3), with sensitivity increasing with increasing numbers of phosphates. Non-acylated inositol phosphates had no effect up to 100 μM. Channels were also activated with increasing efficacy by 1-300 μM concentrations of the monoacyl monophosphates fingolimod phosphate, sphingosine 1-phosphate, and lysophosphatidic acid but not by phosphate-free fingolimod or sphingosine or by phosphate-masked phosphatidylcholine or phosphatidylglycerol. An overlay assay confirmed that a fusion protein containing the full-length C terminus of Kv7.2 could bind to a broad range of phosphoinositides and phospholipids. A mutated Kv7.2 C-terminal construct with reduced sensitivity to PI(4,5)P showed significantly less binding to most polyphosphoinositides. We concluded that M-channels bind to, and are activated by, a wide range of lipid phosphates, with a minimum requirement for an acyl chain and a phosphate headgroup. In this, they more closely resemble inwardly rectifying Kir6.2 potassium channels than the more PI(4,5)P(2)-specific Kir2 channels. Notwithstanding, the data also support the view that the main endogenous activator of M-channels is PI(4,5)P(2).  相似文献   

6.
Kv7.2/Kv7.3 channels are the molecular correlate of the M-current, which stabilizes the membrane potential and controls neuronal excitability. Previous studies have shown the relevance of plasma membrane lipids on both M-currents and Kv7.2/Kv7.3 channels. Here, we report the sensitive modulation of Kv7.2/Kv7.3 channels by membrane cholesterol level. Kv7.2/Kv7.3 channels transiently expressed in HEK-293 cells were significantly inhibited by decreasing the cholesterol level in the plasma membrane by three different pharmacological strategies: methyl-β-cyclodextrin (MβCD), Filipin III, and cholesterol oxidase treatment. Surprisingly, Kv7.2/Kv7.3 channels were also inhibited by membrane cholesterol loading with the MβCD/cholesterol complex. Depletion or enrichment of plasma membrane cholesterol differentially affected the biophysical parameters of the macroscopic Kv7.2/Kv7.3 currents. These results indicate a complex mechanism of Kv7.2/Kv7.3 channels modulation by membrane cholesterol. We propose that inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol depletion involves a loss of a direct cholesterol-channel interaction. However, the inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol enrichment could include an additional direct cholesterol-channel interaction, or changes in the physical properties of the plasma membrane. In summary, our results indicate that an optimum cholesterol level in the plasma membrane is required for the proper functioning of Kv7.2/Kv7.3 channels.  相似文献   

7.
Focal activation of glutamate receptors in distal dendrites of hippocampal pyramidal cells triggers voltage-dependent Ca(2+) channel-mediated plateau potentials that are confined to the stimulated dendrite. We examined the role of dendritic K(+) conductances in determining the amplitude, duration, and spatial compartmentalization of plateau potentials. Manipulations that blocked SK-type Ca(2+)-activated K(+) channels, including apamin and BAPTA dialysis, increased the duration of plateau potentials without affecting their amplitude or compartmentalization. Manipulations that blocked Kv4.2 A-type K(+) channels, including a dominant-negative Kv4.2 construct and 4-aminopyridine, increased the amplitude of plateau potentials by allowing them to recruit neighboring dendrites. Prolongation of plateau potentials or block of Kv4.2 channels at branch points facilitated the ability of dendritic excitation to trigger fast action potentials. SK channels thus underlie repolarization of dendritic plateau potentials, whereas Kv4.2 channels confine these potentials to single dendritic branches, and both act in concert to regulate synaptic integration.  相似文献   

8.
Low-threshold voltage-gated M-type potassium channels (M channels) are tetraheteromers, commonly of two Kv7.2 and two Kv7.3 subunits. Though gated by voltage, the channels have an absolute requirement for binding of the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)) to open. We have investigated the quantitative relation between the concentration of a water-soluble PI(4,5)P(2) analog, dioctanoyl-PI(4,5)P(2) (DiC(8)-PI(4,5)P(2)), and channel open probability (P(open)) by fast application of increasing concentrations of DiC(8)-PI(4,5)P(2) to the inside face of membrane patches excised from Chinese hamster ovary cells expressing M channels as heteromeric Kv7.2/7.3 subunits. The rationale for the experiments is that this will mimic the effect of changes in membrane PI(4,5)P(2) concentration. Single-channel conductances from channel current-voltage relations in cell-attached mode were 9.2 ± 0.1 pS with a 2.5-mM pipette [K(+)]. Plots of P(open) against DiC(8)-PI(4,5)P(2) concentration were best fitted using a two-component concentration-P(open) relationship with high and low affinity, half-maximal effective concentration (EC(50)) values of 1.3 ± 0.14 and 75.5 ± 2.5 μM, respectively, and Hill slopes of 1.4 ± 0.06. In contrast, homomeric channels from cells expressing only Kv7.2 or Kv7.3 constructs yielded single-component curves with EC(50) values of 76.2 ± 19.9 or 3.6 ± 1.0 μM, respectively. When wild-type (WT) Kv7.2 was coexpressed with a mutated Kv7.3 subunit with >100-fold reduced sensitivity to PI(4,5)P(2), the high-affinity component of the activation curve was lost. Fitting the data for WT and mutant channels to an activation mechanism with independent PI(4,5)P(2) binding to two Kv7.2 and two Kv7.3 subunits suggests that the two components of the M-channel activation curve correspond to the interaction of PI(4,5)P(2) with the Kv7.3 and Kv7.2 subunits, respectively, that channels can open when only the two Kv7.3 subunits have bound DiC(8)-PI(4,5)P(2), and that maximum channel opening requires binding to all four subunits.  相似文献   

9.
T lymphocytes are exposed to hypoxia during their development and also when they migrate to hypoxic pathological sites such as tumors and wounds. Although hypoxia can affect T cell development and function, the mechanisms by which immune cells sense and respond to changes in O(2)-availability are poorly understood. K(+) channels encoded by the Kv1.3 subtype of the voltage-dependent Kv1 gene family are highly expressed in lymphocytes and are involved in the control of membrane potential and cell function. In this study, we investigate the sensitivity of Kv1.3 channels to hypoxia in freshly isolated human T lymphocytes and leukemic Jurkat T cells. Acute exposure to hypoxia (20 mmHg, 2 min) inhibits Kv1.3 currents in both cell types by 20%. Prolonged exposure to hypoxia (1% O(2) for 24 h) selectively decreases Kv1.3 protein levels in Jurkat T cells by 47%, but not Kvbeta2 and SK2 Ca-activated K(+) channel subunit levels. The decrease in Kv1.3 protein levels occurs with no change in Kv1.3 mRNA expression and is associated with a significant decrease in K(+) current density. A decrease in Kv1.3 polypeptide levels similar to that obtained during hypoxia is produced by Kv1.3 channel blockage. Our results indicate that hypoxia produces acute and long-term inhibition of Kv1.3 channels in T lymphocytes. This effect could account for the inhibition of lymphocyte proliferation during hypoxia. Indeed, we herein present evidence showing that hypoxia selectively inhibits TCR-mediated proliferation and that this inhibition is associated with a decrease in Kv1.3 proteins.  相似文献   

10.
Ethanol often causes critical health problems by altering the neuro-nal activities of the central and peripheral nerve systems. One of the cellular targets of ethanol is the plasma membrane proteins including ion channels and receptors. Recently, we reported that ethanol elevates membrane excitability in sympathetic neurons by inhibiting Kv7.2/7.3 channels in a cell type-specific manner. Even though our studies revealed that the inhibitory effects of ethanol on the Kv7.2/7.3 channel was diminished by the increase of plasma membrane phosphatidylinositol 4,5-bisphosphate (PI (4,5)P2), the molecular mechanism of ethanol on Kv7.2/7.3 channel inhibition remains unclear. By investigating the kinetics of Kv7.2/7.3 current in high K+ solution, we found that ethanol inhibited Kv7.2/7.3 channels through a mechanism distinct from that of tetraethylammonium (TEA) which enters into the pore and blocks the gate of the channels. Using a non-stationary noise analysis (NSNA), we demonstrated that the inhibitory effect of ethanol is the result of reduction of open probability (PO) of the Kv7.2/7.3 channel, but not of a single channel current (i) or channel number (N). Finally, ethanol selectively facilitated the kinetics of Kv7.2 current suppression by voltage-sensing phosphatase (VSP)-induced PI(4,5)P2 depletion, while it slowed down Kv7.2 current recovery from the VSP-induced inhibition. Together our results suggest that ethanol regulates neuronal activity through the reduction of open probability and PI(4,5)P2 sensitivity of Kv7.2/7.3 channels.  相似文献   

11.
The fundamental principles underlying voltage sensing, a hallmark feature of electrically excitable cells, are still enigmatic and the subject of intense scrutiny and controversy. Here we show that a novel prokaryotic voltage-gated K(+) (Kv) channel from Listeria monocytogenes (KvLm) embodies a rudimentary, yet robust, sensor sufficient to endow it with voltage-dependent features comparable to those of eukaryotic Kv channels. The most conspicuous feature of the KvLm sequence is the nature of the sensor components: the motif is recognizable; it appears, however, to contain only three out of eight charged residues known to be conserved in eukaryotic Kv channels and accepted to be deterministic for folding and sensing. Despite the atypical sensor sequence, flux assays of KvLm reconstituted in liposomes disclosed a channel pore that is highly selective for K(+) and is blocked by conventional Kv channel blockers. Single-channel currents recorded in symmetric K(+) solutions from patches of enlarged Escherichia coli (spheroplasts) expressing KvLm showed that channel open probability sharply increases with depolarization, a hallmark feature of Kv channels. The identification of a voltage sensor module in KvLm with a voltage dependence comparable to that of other eukaryotic Kv channels yet encoded by a sequence that departs significantly from the consensus sequence of a eukaryotic voltage sensor establishes a molecular blueprint of a minimal sequence for a voltage sensor.  相似文献   

12.
Animal venoms are rich sources of ligands for studying ion channels and other pharmacological targets. Proteomic analyses of the soluble venom from the Mexican scorpion Vaejovis mexicanus smithi showed that it contains more than 200 different components. Among them, a 36-residue peptide with a molecular mass of 3864 Da (named Vm24) was shown to be a potent blocker of Kv1.3 of human lymphocytes (K(d) ~ 3 pM). The three-dimensional solution structure of Vm24 was determined by nuclear magnetic resonance, showing the peptide folds into a distorted cystine-stabilized α/β motif consisting of a single-turn α-helix and a three-stranded antiparallel β-sheet, stabilized by four disulfide bridges. The disulfide pairs are formed between Cys6 and Cys26, Cys12 and Cys31, Cys16 and Cys33, and Cys21 and Cys36. Sequence analyses identified Vm24 as the first example of a new subfamily of α-type K(+) channel blockers (systematic number α-KTx 23.1). Comparison with other Kv1.3 blockers isolated from scorpions suggests a number of structural features that could explain the remarkable affinity and specificity of Vm24 toward Kv1.3 channels of lymphocytes.  相似文献   

13.
[Arg(8)]-vasopressin (AVP), at low concentrations (10-500 pM), stimulates oscillations in intracellular Ca(2+) concentration (Ca(2+) spikes) in A7r5 rat aortic smooth muscle cells. Our previous studies provided biochemical evidence that protein kinase C (PKC) activation and phosphorylation of voltage-sensitive K(+) (K(v)) channels are crucial steps in this process. In the present study, K(v) currents (I(Kv)) and membrane potential were measured using patch clamp techniques. Treatment of A7r5 cells with 100 pM AVP resulted in significant inhibition of I(Kv). This effect was associated with gradual membrane depolarization, increased membrane resistance, and action potential (AP) generation in the same cells. The AVP-sensitive I(Kv) was resistant to 4-aminopyridine, iberiotoxin, and glibenclamide but was fully inhibited by the selective KCNQ channel blockers linopirdine (10 microM) and XE-991 (10 microM) and enhanced by the KCNQ channel activator flupirtine (10 microM). BaCl(2) (100 microM) or linopirdine (5 microM) mimicked the effects of AVP on K(+) currents, AP generation, and Ca(2+) spiking. Expression of KCNQ5 was detected by RT-PCR in A7r5 cells and freshly isolated rat aortic smooth muscle. RNA interference directed toward KCNQ5 reduced KCNQ5 protein expression and resulted in a significant decrease in I(Kv) in A7r5 cells. I(Kv) was also inhibited in response to the PKC activator 4beta-phorbol 12-myristate 13-acetate (10 nM), and the inhibition of I(Kv) by AVP was prevented by the PKC inhibitor calphostin C (250 nM). These results suggest that the stimulation of Ca(2+) spiking by physiological concentrations of AVP involves PKC-dependent inhibition of KCNQ5 channels and increased AP firing in A7r5 cells.  相似文献   

14.
Voltage-dependent K(+) (Kv) currents in macrophages are mainly mediated by Kv1.3, but biophysical properties indicate that the channel composition could be different from that of T-lymphocytes. K(+) currents in mouse bone marrow-derived and Raw-264.7 macrophages are sensitive to Kv1.3 blockers, but unlike T-cells, macrophages express Kv1.5. Because Shaker subunits (Kv1) may form heterotetrameric complexes, we investigated whether Kv1.5 has a function in Kv currents in macrophages. Kv1.3 and Kv1.5 co-localize at the membrane, and half-activation voltages and pharmacology indicate that K(+) currents may be accounted for by various Kv complexes in macrophages. Co-expression of Kv1.3 and Kv1.5 in human embryonic kidney 293 cells showed that the presence of Kv1.5 leads to a positive shift in K(+) current half-activation voltages and that, like Kv1.3, Kv1.3/Kv1.5 heteromers are sensitive to r-margatoxin. In addition, both proteins co-immunoprecipitate and co-localize. Fluorescence resonance energy transfer studies further demonstrated that Kv1.5 and Kv1.3 form heterotetramers. Electrophysiological and pharmacological studies of different ratios of Kv1.3 and Kv1.5 co-expressed in Xenopus oocytes suggest that various hybrids might be responsible for K(+) currents in macrophages. Tumor necrosis factor-alpha-induced activation of macrophages increased Kv1.3 with no changes in Kv.1.5, which is consistent with a hyperpolarized shift in half-activation voltage and a lower IC(50) for margatoxin. Taken together, our results demonstrate that Kv1.5 co-associates with Kv1.3, generating functional heterotetramers in macrophages. Changes in the oligomeric composition of functional Kv channels would give rise to different biophysical and pharmacological properties, which could determine specific cellular responses.  相似文献   

15.
Voltage-gated K(+) channels of the Kv7 family underlie the neuronal M current that regulates action potential firing. Suppression of M current increases excitability and its enhancement can silence neurons. We here show that three of five Kv7 channels undergo strong enhancement of their activity by oxidative modification induced by physiological concentrations of hydrogen peroxide. A triple cysteine pocket in the channel S2-S3 linker is critical for this effect. Oxidation-induced enhancement of M current produced a hyperpolarization and a dramatic reduction of action potential firing frequency in rat sympathetic neurons. As hydrogen peroxide is robustly produced during hypoxia-induced oxidative stress, we used an oxygen/glucose deprivation neurodegeneration model that showed neuronal death to be severely accelerated by M current blockade. Such blockade had no effect on survival of normoxic neurons. This work describes a novel pathway of M-channel regulation and suggests a role for M channels in protective neuronal silencing during oxidative stress.  相似文献   

16.
Neuronal Kv7/KCNQ channels are critical regulators of neuronal excitability since they potently suppress repetitive firing of action potentials. These voltage-dependent potassium channels are composed mostly of Kv7.2 / KCNQ2 and KvT.3 / KCNQ3 subunits that show overlapping distribution throughout the brain and in the peripheral nervous system. They are also called 'M-channels' since their inhibition by muscarinic agonists leads to a profound increase in action potential firing. Consistent with their ability to suppress seizures and attenuate chronic inflammatory and neuropathic pain, mutations in the KCNQ2 and KCNQ3 genes are associated with benign familial neonatal convulsions, a dominantly-inherited epilepsy in infancy. Recently, de novo mutations in the KCNQ2 gene have been linked to early onset epileptic encephalopathy. Notably, some of these mutations are clustered in a region of the intracellular cytoplasmic tail of Kv7.2 that interacts with a ubiquitous calcium sensor, calmodulin. In this review, we highlight the recent advances in understanding the role of calmodulin in modulating physiological function of neuronal Kv7 channels including their biophysical properties, assembly, and trafficking. We also summarize recent studies that have investigated functional impact of epilepsy-associated mutations localized to the calmodulin binding domains of Kv7.2.  相似文献   

17.
K(+) efflux is observed as an early event in the apoptotic process in various cell types. Loss of intracellular K(+) and subsequent reduction in ionic strength are suggested to release the inhibition of proapoptotic caspases. In this work, a new K(+)-specific microelectrode was used to study possible alterations in intracellular K(+) in Xenopus laevis oocytes during chemically induced apoptosis. The accuracy of the microelectrode to detect changes in intracellular K(+) was verified with parallel electrophysiological measurements. In concordance with previous studies on other cell types, apoptotic stimuli reduced the intracellular K(+) concentration in Xenopus oocytes and increased caspase-3 activity. The reduction in intracellular K(+) was prevented by dense expression of voltage-gated K (Kv) channels. Despite this, the caspase-3 activity was increased similarly in Kv channel-expressing oocytes as in oocytes not expressing Kv channels. Thus, in Xenopus oocytes caspase-3 activity is not dependent on the intracellular concentration of K(+).  相似文献   

18.
Impairments in axonal dopamine release are associated with neurological disorders such as schizophrenia and attention deficit hyperactivity disorder and pathophysiological conditions promoting drug abuse and obesity. The D2 dopamine autoreceptor (D2-AR) exerts tight regulatory control of axonal dopamine (DA) release through a mechanism suggested to involve K(+) channels. To evaluate the contribution of Kv1 voltage-gated potassium channels of the Shaker gene family to the regulation of axonal DA release by the D2-AR, the present study employed expression analyses, real time measurements of striatal DA overflow, K(+) current measurements and immunoprecipitation assays. Kv1.1, -1.2, -1.3, and -1.6 mRNA and protein were detected in midbrain DA neurons purified by fluorescence-activated cell sorting and in primary DA neuron cultures. In addition, Kv1.1, -1.2, and -1.6 were localized to DA axonal processes in the dorsal striatum. By means of fast scan cyclic voltammetry in striatal slice preparations, we found that the inhibition of stimulation-evoked DA overflow by a D2 agonist was attenuated by Kv1.1, -1.2, and -1.6 toxin blockers. A particular role for the Kv1.2 subunit in the process whereby axonal D2-AR inhibits DA overflow was established with the use of a selective Kv1.2 blocker and Kv1.2 knock-out mice. Moreover, we demonstrate the ability of D2-AR activation to increase Kv1.2 currents in co-transfected cells and its reliance on Gβγ subunit signaling along with the physical coupling of D2-AR and Kv1.2-containing channels in striatal tissue. These findings underline the contribution of Kv1.2 in the regulation of nigrostriatal DA release by the D2-AR and thereby offer a novel mechanism by which DA release is regulated.  相似文献   

19.
Oxygen-sensitive K(+) channels are important elements in the cellular response to hypoxia. Although much progress has been made in identifying their molecular composition, the structural components associated to their O(2)-sensitivity are not yet understood. Recombinant Kv1.2 currents expressed in Xenopus oocytes are inhibited by a decrease in O(2) availability. On the contrary, heterologous Kv2.1 channels are O(2)-insensitive. To elucidate the protein segment responsible for the O(2)-sensitivity of Kv1.2 channels, we analyzed the response to anoxia of Kv1.2/Kv2.1 chimeric channels. Expression of chimeric Kv2.1 channels each containing the S4, the S1-S3 or the S6-COOH segments of Kv1.2 polypeptide resulted in a K(+) current insensitive to anoxia. In contrast, transferring the S5-S6 segment of Kv1.2 into Kv2.1 produced an O(2)-sensitive K(+) current. Finally, mutating a redox-sensitive methionine residue (M380) of Kv1.2 polypeptide did not affect O(2)-sensitivity. Thus, the pore and its surrounding regions of Kv1.2 polypeptide confer its hypoxic inhibition. This response is independent on the redox modulation of methionine residues in this protein segment.  相似文献   

20.
Kv7.2 and Kv7.3 (encoded by KCNQ2 and KCNQ3) are homologous subunits forming a widely expressed neuronal voltage-gated K(+) (Kv) channel. Hypomorphic mutations in either KCNQ2 or KCNQ3 cause a highly penetrant, though transient, human phenotype-epilepsy during the first months of life. Some KCNQ2 mutations also cause involuntary muscle rippling, or myokymia, which is indicative of motoneuron axon hyperexcitability. Kv7.2 and Kv7.3 are concentrated at axonal initial segments (AISs), and at nodes of Ranvier in the central and peripheral nervous system. Kv7.2 and Kv7.3 share a novel ~80 residue C-terminal domain bearing an "anchor" motif, which interacts with ankyrin-G and is required for channel AIS (and likely, nodal) localization. This domain includes the sequence IAEGES/TDTD, which is analogous (not homologous) to the ankyrin-G interaction motif of voltage-gated Na(+) (Na(V)) channels. The KCNQ subfamily is evolutionarily ancient, with two genes (KCNQ1 and KCNQ5) persisting as orthologues in extant bilaterian animals from worm to man. However, KCNQ2 and KCNQ3 arose much more recently, in the interval between the divergence of extant jawless and jawed vertebrates. This is precisely the interval during which myelin and saltatory conduction evolved. The natural selection for KCNQ2 and KCNQ3 appears to hinge on these subunits' unique ability to be coordinately localized with Na(V) channels by ankyrin-G, and the resulting enhancement in the reliability of neuronal excitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号