首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
BACKGROUND: The unique discriminative ability of immunofluorescent probes can be severely compromised when probe emission competes against naturally occurring, intrinsically fluorescent substances (autofluorophores). Luminescence microscopes that operate in the time-domain can selectively resolve probes with long fluorescence lifetimes (tau > 100 micros) against short-lived fluorescence to deliver greatly improved signal-to-noise ratio (SNR). A novel time-gated luminescence microscope design is reported that employs an ultraviolet (UV) light emitting diode (LED) to excite fluorescence from a europium chelate immunoconjugate with a long fluorescence lifetime. METHODS: A commercial Zeiss epifluorescence microscope was adapted for TGL operation by fitting with a time-gated image-intensified CCD camera and a high-power (100 mW) UV LED. Capture of the luminescence was delayed for a precise interval following excitation so that autofluorescence was suppressed. Giardia cysts were labeled in situ with antibody conjugated to a europium chelate (BHHST) with a fluorescence lifetime >500 micros. RESULTS: BHHST-labeled Giardia cysts emit at 617 nm when excited in the UV and were difficult to locate within the matrix of fluorescent algae using conventional fluorescence microscopy, and the SNR of probe to autofluorescent background was 0.51:1. However in time-gated luminescence mode with a gate-delay of 5 mus, the SNR was improved to 12.8:1, a 25-fold improvement. CONCLUSION: In comparison to xenon flashlamps, UV LEDs are inexpensive, easily powered, and extinguish quickly. Furthermore, the spiked emission of the LED enabled removal of spectral filters from the microscope to significantly improve efficiency of fluorescence excitation and capture.  相似文献   

2.
BACKGROUND: Luminescent lanthanide complexes produce emissions with the narrowest-known width at half maximum; however, their significant use in cytometry required an increase in luminescence intensity. The companion review, Leif et al., Cytometry 2006;69A:767-778, described a new technique for the enhancement of lanthanide luminescence, the Resonance Energy Transfer Enhanced Luminescence (RETEL) effect, which increases luminescence and is compatible with standard slide microscopy. METHODS: The luminescence of the europium ion macrocyclic complex, EuMac, was increased by employing the RETEL effect. After adding the nonluminescent gadolinium ion complex of the thenoyltrifluoroacetonate (TTFA) ligand or the sodium salt of TTFA in ethanol solution, the EuMac-labeled sample was allowed to dry. Both a conventional arc lamp and a time-gated UV LED served as light sources for microscopic imaging. The emission intensity was measured with a CCD camera. Multiple time-gated images were summed with special software to permit analysis and effective presentation of the final image. RESULTS: With the RETEL effect, the luminescence of the EuMac-streptavidin conjugate increased at least six-fold upon drying. Nuclei of apoptotic cells were stained with DAPI and tailed with 5BrdUrd to which a EuMac-anti-5BrdU conjugate was subsequently attached. Time-gated images showed the long-lived EuMac luminescence but did not show the short-lived DAPI fluorescence. Imaging of DNA-synthesizing cells with an arc lamp showed that both S phase and apoptotic cells were labeled, and that their labeling patterns were different. The images of the luminescent EuMac and fluorescent DAPI were combined to produce a color image on a white background. This combination of simple chemistry, instrumentation, and presentation should make possible the inexpensive use of the lanthanide macrocycles, Quantum Dyes, as molecular diagnostics for cytological and histopathological microscopic imaging.  相似文献   

3.
The application of lanthanide complexes in the time-resolved fluorescence imaging of living cells has emerged in the last few decades, providing high-contrast images of cells through detection of the delayed emission. In the present study, we synthesized novel trivalent lanthanide complexes containing the cyclic peptide c(RGDfK) to visualize the αvβ3-integrin-expressing tumor cells. Conjugation of c(RGDfK) with the macrocyclic bipyridine ligand had little effect on the fluorescence properties of the complex, indicating that the coordinated lanthanide ion was well isolated from the peptide. Bright luminescence images of αvβ3-integrin-expressing U87-MG cells were successfully obtained by employing the probes.  相似文献   

4.
We use a streptavidin-based macromolecular complex (SBMC) labelled with the europium chelate of 4,7-bis (chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid (BCPDA) as a staining reagent for biotinylated DNA present on nitrocellulose filters. The fluorescent spots or bands obtained can either be observed under UV illumination, photographed by instant camera photography or quantified by using a specially designed instrument working as a high resolution time-resolved fluorometric scanner. The detection limit is approximately 10 pg of target DNA. Various experiments with use of biotinylated DNA probes hybridized to Southern transferred targets have shown that the new procedure is a useful versatile non-isotopic methodology for staining DNA on solid supports.  相似文献   

5.
A method is introduced for quantitative detection of cell surface protein expression. The method is based on immunocytochemistry, the use of long decay time europium(III) chelate and platinum(II) porphyrin labels, and detection of photoluminescence emission from adhered cells by time-resolved fluorimetry. After immunocytochemistry, the assay wells are evaporated to dryness and measured in the dry state. This protocol allows repeated and postponed analysis and microscopy imaging. In order to investigate the performance of the method, we chose expression of intercellular adhesion molecule-1 (ICAM-1) of endothelial cell line EAhy926 as a research target. The expression of ICAM-1 on the cells was enhanced by introduction of a cytokine, tumour necrosis factor-alpha (TNFalpha). The method gave signal:background ratios (S:B) of 20 and 9 for europium and platinum labels, respectively, whereas prompt fluorescent FITC label gave a S:B of 3. Screening window coefficients (=Z'-factor) were >0.5 for all the three labels, thus indicating a score for an excellent screening assay. In conclusion, the method appears to be an appropriate choice for protein expression analysis, both in high-throughput screening applications, and for detailed sample investigation by fluorescent microscopy imaging.  相似文献   

6.
Homogeneous DNA hybridization assay based on luminescence resonance energy transfer (LRET) from a tetradentate beta-diketonate europium chelate, 4,4'-bis(1' ',1' ',1' ',2' ',2' ',3' ',3' '-heptafluoro-4' ',6' '-hexanedion-6' '-yl)-chlorosulfo-o-terphenyl (BHHCT)-Eu(3+) (lambda(ex) = 340 nm and lambda(em) = 615 nm), to an organic dye, Cy5 (lambda(ex) = 643 nm and lambda(em) = 669 nm) has been developed, in which two DNA probes whose sequences comprises the whole complementary strand to the target DNA, are used; one probe having a biotin label on the 3'-terminus and the other a Cy5 label on the 5'-terminus. After hybridization, streptavidin labeled with BHHCT-Eu(3+) was added to the hybridization solution, and in the presence of the target DNA, the sensitized emission of Cy5 was observed when the hybridized complex was irradiated at 340 nm. In the absence of the target DNA, no emission was observed from Cy5.  相似文献   

7.
Anti-rabbit IgG labeled with a new fluorescent europium chelate was used to localize rabbit IgG to human smooth muscle myosin in a histological section. The antibody labeled with the europium chelate could be viewed with a conventional fluorescence microscope with a steady-state light source. This result encourages the development of a time-resolved fluorescence microscope, because a significant improvement in the signal-to-noise ratio can be anticipated.  相似文献   

8.
Homogeneous DNA hybridization assay based on the luminescence resonance energy transfer (LRET) from a new luminescence terbium chelate, N,N,N(1),N(1)-[2,6-bis(3'-aminomethyl-1'-pyrazolyl)-4-phenylpyridine]tetrakis(acetic acid) (BPTA)-Tb(3+) (lambda(ex) = 325 nm and lambda(em) = 545 nm) to an organic dye, Cy3 (lambda(ex) = 548 nm and lambda(em) = 565 nm), has been developed. In the system, two DNA probes whose sequences are complementary to the two different consecutive sequences of a target DNA are used; one of the probes is labeled with the Tb(3+) chelate at the 3'-end, and the other is with Cy3 at the 5'-end. Labeling of the Tb(3+) chelate is accomplished via the linkage of a biotin-labeled DNA probe with the Tb(3+) chelate-labeled streptavidin. Strong sensitized emission of Cy3 was observed upon excitation of the Tb(3+) chelate at 325 nm, when the two probe DNAs were hybridized with the target DNA. The sensitivity of the assay was very high compared with those of the previous homogeneous-format assays using the conventional organic dyes; the detection limit of the present assay is about 30 pM of the target DNA strand.  相似文献   

9.
An improved apparatus for obtaining luminescence (delayed light emission) images of plants is described. It consists of a phosphoroscope equipped with an imaging lens and an electronic image intensifier. It is also equipped with light-sources for obtaining images with reflected light and fluorescence light. It is shown that damage to the photosynthetic system caused by virus, insects, high or low temperature, ultraviolet radiation, or herbicide, and also chioroplast senescence as part of a normal developmental process, can be followed by this non-destructive method. In many cases changes which are not visible in fluorescence images are clearly seen in luminescence images.  相似文献   

10.
Imaging was one of the earliest techniques to quantify radiation dose. While films and active fluorescent detectors are still commonly used in physical dosimetry, biological imaging is emerging as a new method to visualize and quantify radiation dose in biological targets. Methods for biological imaging are normally based on molecular fluorescent probes, labeling chromatin-conjugated molecules or specific repair proteins. Examples are chromatin-binding coumarin compounds, which become fluorescent under irradiation, or the H2AX histone, which is rapidly phosphorylated at sites of DNA double-strand breaks and can be visualized by immunostaining. Many other DNA repair proteins can be expressed with fluorescent targets, such as green fluorescent protein, thus becoming visible for dose estimation in vivo. The possibility to visualize radiation damage in living biological targets is particularly important for repair kinetic studies, for estimating individual radiation response, and for remote control of living samples exposed to radiation, for instance in robotic space missions. In vivo dose monitoring in particle therapy exploits the production of positron emitters by nuclear interaction of the incident beam in the patient's body. Positron emission tomography (PET) can then be used to visualize and quantify the particle dose in the patient, and it can in principle also be used for radiotherapy with high-energy X rays. Alternatively, prompt γ rays or scattered secondary particles are under study for in vivo dosimetry of ion beams in therapy.  相似文献   

11.
Detection of Forster resonance energy transfer (FRET) between fluorescent protein labeled targets is a valuable strategy for measurement of protein-protein interactions and other intracellular processes. Despite the utility of FRET, widespread application of this technique to biological problems and high-throughput screening has been limited by low-contrast measurement strategies that rely on the detection of sensitized emission or photodestruction of the sample. Here we report a FRET detection strategy based on detecting depolarized sensitized emission. In the absence of FRET, we show that fluorescence emission from a donor fluorescent protein is highly polarized. Depolarization of fluorescence emission is observed only in the presence of energy transfer. A simple detection strategy was adapted for fluorescence microscopy using both laser scanning and wide-field approaches. This approach is able to distinguish FRET between linked and unlinked Cerulean and Venus fluorescent proteins in living cells with a larger dynamic range than other approaches.  相似文献   

12.
Thiol-reactive lanthanide complexes have been synthesized that are luminescent when bound to terbium and/or europium. The complexes consist of a diethylenetriaminepentaacetate (DTPA) chelate covalently joined through one amide bond to a chromophore, carbostyril 124, and via a second amide bond to a maleimide, bromoacetamide, or pyridyldithio moiety. Site-specific attachment and characterization of the complexes attached to DNA-activating protein NtrC, to various sites on myosin, or to DNA are presented. The compounds coordinate a surprisingly large number of ligation sites of terbium when a hydrazide spacer is used between the chelate and thiol-reactive moiety, although this extra ligation can cause quenching when europium is used. Synthesis is a simple two- or three-step reaction, and purification is straightforward. The compounds should be useful as nonisotopic replacements, as long-lifetime probes in imaging, and as donors in luminescence resonance energy transfer. They are examples of a wide class of chelates that can be made conjugatable via readily available hetero- or homo-bifunctional linkers.  相似文献   

13.
The authors have previously reported a homogeneous time-resolved fluorescence proximity immunoassay for estradiol. The assay was based on luminescence resonance energy transfer between a long lifetime fluorescent europium(III) chelate-dyed nanoparticle donor and a short lifetime, near-infrared fluorescent acceptor. The energy transfer prolonged the lifetime of the sensitized acceptor emission, and the fluorescence of the acceptor was measured using a time-resolved detection. The developed immunoassay was employed to screen inhibitors for enzyme 17beta-hydroxysteroid dehydrogenase type 1. The enzyme overexpressed in MCF-7 cells catalyzed a reversible conversion of estroneto17beta-estradiol. The inhibition efficiency of the tested molecule was obtained by comparing the final concentration of converted estradiol after 60 min of conversion reaction in a sample and in a conversion control not containing an inhibitor. The Zbeta factor calculated using the E2 concentrations of the homogeneous assay was 0.64, demonstrating a relatively good performance of the assay. The results from the homogeneous assay were comparable with the results obtained using radioactively labeled estrone as a substrate and high-performance liquid chromatography (HPLC) separation of estrone and converted estradiol after the enzyme reaction. Thus, this homogeneous assay can simplify the primary screening of potential new drug molecules by replacing a tedious radiometric HPLC method.  相似文献   

14.
Recently, light microscopy moved back into the spotlight, which is mainly due to the development of revolutionary technologies for imaging real-time events in living cells. It is truly fascinating to see enzymes “at work” and optically acquired images certainly help us to understand biological processes better than any abstract measurements. This review aims to point out elegant examples of recent cell-biological imaging applications that have been developed with a chemical approach. The discussed technologies include nanoscale fluorescence microscopy, imaging of model membranes, automated high-throughput microscopy control and analysis, and fluorescent probes with a special focus on visualizing enzyme activity, free radicals, and protein–protein interaction designed for use in living cells.  相似文献   

15.
Labeling proteins with long-lifetime emitting lanthanide (III) chelate reporters enables sensitive, time-resolved luminescence bioaffinity assays. Heterodimers of trimethoprim (TMP) covalently linked to various cs124-sensitized, polyaminocarboxylate chelates stably retain lanthanide ions and exhibit quantum yields of europium emission up to 20% in water. A time-resolved, luminescence resonance energy transfer (LRET) assay showed that TMP-polyaminocarboxylates bind to Escherichia coli dihydrofolate reductase (eDHFR) fusion proteins with nanomolar affinity in purified solutions and in bacterial lysates. The ability to selectively impart terbium or europium luminescence to fusion proteins in complex physiological mixtures bypasses the need for specific antibodies and simplifies sample preparation.  相似文献   

16.
We show far-field fluorescence nanoscopy of different structural elements labeled with an organic dye within living mammalian cells. The diffraction barrier limiting far-field light microscopy is outperformed by using stimulated emission depletion. We used the tagging protein hAGT (SNAP-tag), which covalently binds benzylguanine-substituted organic dyes, for labeling. Tetramethylrhodamine was used to image the cytoskeleton (vimentin and microtubule-associated protein 2) as well as structures located at the cell membrane (caveolin and connexin-43) with a resolution down to 40 nm. Comparison with structures labeled with the yellow fluorescent protein Citrine validates this labeling approach. Nanoscopic movies showing the movement of connexin-43 clusters across the cell membrane evidence the capability of this technique to observe structural changes on the nanoscale over time. Pulsed or continuous-wave lasers for excitation and stimulated emission depletion yield images of similar resolution in living cells. Hence fusion proteins that bind modified organic dyes expand widely the application range of far-field fluorescence nanoscopy of living cells.  相似文献   

17.
Light microscopy is a key tool in modern cell biology. Light microscopy has several features that make it ideally suited for imaging biology in living cells: the resolution is well-matched to the sizes of subcellular structures, a diverse range of available fluorescent probes makes it possible to mark proteins, organelles, and other structures for imaging, and the relatively nonperturbing nature of light means that living cells can be imaged for long periods of time to follow their dynamics. Here I provide a brief introduction to using light microscopy in cell biology, with particular emphasis on factors to be considered when starting microscopy experiments.  相似文献   

18.
This work constitutes the first fluorescent imaging of cells using metal plasmon-coupled probes (PCPs) at single cell resolution. N-(2-Mercapto-propionyl)glycine-coated silver nanoparticles were synthesized by reduction of silver nitrate using sodium borohyride and then succinimidylated via ligand exchange. Alexa Fluor 647-labeled concanavalin A (con A) was chemically bound to the silver particles to make the fluorescent metal plasmon-coupled probes. The fluorescence images were collected using a scanning confocal microscopy. The fluorescence intensity was observed to enhance 7-fold when binding the labeled con A on a single silver particle. PCPs were conjugated on HEK 293 A cells. Imaging results demonstrate that cells labeled by PCPs were 20-fold brighter than those by free labeled con A.  相似文献   

19.
Micro Arrayed Compound Screening (microARCS) is a miniaturized ultra-high-throughput screening platform developed at Abbott Laboratories. In this format, 8,640 discrete compounds are spotted and dried onto a polystyrene sheet, which has the same footprint as a 96-well plate. A homogeneous time-resolved fluorescence assay format (LANCE) was applied to identify the inhibitors of caspase-3 using a peptide substrate labeled with a fluorescent europium chelate and a dabcyl quencher. The caspase-3 enzyme was cast into a thin agarose gel, which was placed on a sheet containing test compounds. A second gel containing caspase substrate was then laid above the enzyme gel to initiate the reaction. Caspase-3 cleaves the substrate and separates the europium from the quencher, giving rise to a time-resolved fluorescent signal, which was detected using a ViewLux charge-coupled device imaging system. Potential inhibitors of caspase-3 appeared as dark spots on a bright fluorescent background. Results from the microARCS assay format were compared to those from a conventional 96-well plate-screening format.  相似文献   

20.
A conventional fluorescence microscope was modified to observe the sites of resonance energy transfer (RET) between fluorescent probes in model membranes and in living cells. These modifications, and the parameters necessary to observe RET between membrane-bound fluorochromes, are detailed for a system that uses N-4-nitrobenzo-2-oxa-1,3-diazole (NBD) or fluorescein as the energy donor and sulforhodamine as the energy acceptor. The necessary parameters for RET in this system were first optimized using liposomes. Both quenching of the energy donor and sensitized fluorescence of the energy acceptor could be directly observed in the microscope. RET microscopy was then used in cultured fibroblasts to identify those intracellular organelles labeled by the lipid probe, N-SRh-decylamine (N-SRh-C10). This was done by observing the sites of RET in cells doubly labeled with N-SRh-C10 and an NBD-labeled lipid previously shown to label the endoplasmic reticulum, mitochondria, and nuclear envelope. RET microscopy was also used in cells treated with fluorescein-labeled Lens culinaris agglutinin and a sulforhodamine derivative of phosphatidylcholine to examine the internalization of plasma membrane lipid and protein probes. After internalization, the fluorescent lectin resided in most, but not all of the intracellular compartments labeled by the fluorescent lipid, suggesting sorting of the membrane-bound lectin into a subset of internal compartments. We conclude that RET microscopy can co-localize different membrane-bound components at high resolution, and may be particularly useful in examining temporal and spatial changes in the distribution of fluorescent molecules in membranes of the living cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号