首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Abstract: This study investigated the hypothesis that D1 and D2 dopamine receptors interact to regulate the expression of zif/268 mRNA in rat forebrain after an acute injection of amphetamine or methamphetamine. Forty-five minutes and 3 h after a single injection of amphetamine (4 mg/kg i.p.) or methamphetamine (4 mg/kg i.p.), the mRNA expression of zif/268 in dorsal striatum and sensorimotor cortex was increased, as revealed by quantitative in situ hybridization histochemistry. Induction was more intense in striatal patches at 45 min than at 3 h, when a more homogeneous pattern of zif/268 mRNA induction was observed. SCH 23390, a selective D1 receptor antagonist, suppressed, and eticlopride, a D2 receptor antagonist, elevated, constitutive zif/268 mRNA levels in the striatum, but neither antagonist had a significant effect on the constitutive expression of zif/268 in sensorimotor cortex. Pretreatment with SCH 23390 completely blocked the stimulant-induced zif/268 expression in striatum and partially blocked the stimulant-induced zif/268 expression in cortex. Pretreatment with eticlopride augmented zif/268 mRNA expression in patch and matrix compartments of dorsal and ventral striatum 45 min after amphetamine or methamphetamine injection. However, at 3 h, eticlopride completely blocked amphetamine- and methamphetamine-stimulated zif/268 mRNA in dorsomedial, but not dorsolateral, striatum. In addition, eticlopride partially blocked cortical zif/268 induction by both amphetamines. Both antagonists prevented stimulant-induced hyperlocomotion and stereotypies. These results demonstrate that D1 and D2 receptors in mesolimbic/mesostriatal pathways both regulate amphetamine-and methamphetamine-stimulated behaviors and zif/268 mRNA expression. Furthermore, the effect of D2 receptor blockade on zif/268 expression was found to be contingent on the time interval investigated after psychostimulant administration.  相似文献   

2.
Abstract: We investigated whether changes in the dopamine transporter in the nucleus accumbens or striatum are involved in cocaine-induced behavioral sensitization by using in vivo electrochemistry to monitor the clearance of locally applied dopamine in anesthetized rats. Rats were injected with cocaine-HCI (10 mg/kg i.p.) or saline daily for 7 consecutive days and then withdrawn for 7 days. Pressure ejection of a finite amount of dopamine at 5-min intervals from a micropipette adjacent to the electrochemical recording electrode produced transient and reproducible dopamine signals. After a challenge injection of cocaine (10 mg/kg i.p.), the signals in the nucleus accumbens of cocaine-treated animals became prolonged and the clearance rate of the dopamine decreased, indicating significant inhibition of the dopamine transporter. In contrast, simultaneous measurements in the dorsal striatum indicated a transient increase in both the amplitude of the signals and the clearance rate of the dopamine. The signals in both brain regions in the saline-treated animals given the cocaine challenge were similar to those in untreated animals given an acute injection of cocaine (10 mg/ kg i.p.) or saline. Behaviorally, not all of the cocaine- treated animals were sensitized; however, both sensitized and nonsensitized animals displayed similar changes in dopamine clearance rate. Quantitative autoradiography with [3H]mazindol revealed that the affinity of the dopamine transporter for cocaine and the density of binding sites were similar in cocaine- and saline-treated rats. The decrease in dopamine clearance rate observed in the nucleus accumbens of the cocaine-treated rats after a challenge injection of cocaine is consistent with increased do- paminergic transmission, but does not appear to be sufficient in itself for producing behavioral sensitization.  相似文献   

3.
A sensitive and rapid HPLC-UV method for in vivo determinations of cocaine levels in extracellular fluid of specific brain regions and plasma is described. Free drug levels resulting from intravenous administration of cocaine were sampled using in vivo microdialysis probes simultaneously located in the jugular vein, nucleus accumbens, and anteromedial caudate-putamen of halothane-anesthetized rats. In a separate group of animals, the influence of cocaine on extracellular dopamine concentrations in the anteromedial caudate-putamen was also assessed. The time dependences of changes in cocaine concentration in each of the above regions were congruent, and peak concentrations were reached 10 min after the drug was administered. The half-lives of cocaine in the blood, nucleus accumbens, and anteromedial caudate-putamen were estimated to be 31.5, 29.1, and 21.4 min, respectively. A repeated injection of cocaine, given 90 min later, produced a maximal cocaine level and pharmacokinetic profile that were indistinguishable from those of the initial infusion. Cocaine was concentrated to a greater extent in brain than in blood, a feature consistent with the action of a lipophilic drug. In addition, extracellular dopamine levels measured in the anteromedial caudate-putamen following cocaine infusions closely mirrored those of cocaine itself. The ability to measure the free concentration of drugs by microdialysis should be applicable to a wide range of in vivo pharmacological studies.  相似文献   

4.
In general, administration of methamphetamine and cocaine alters preprodynorphin and preproenkephalin mRNA levels in striatum. However, no study has directly compared the effects of these stimulants on opioid peptides in striatum. This study used in situ hybridization to compare directly the effects of cocaine and methamphetamine on preprodynorphin and preproenkephalin mRNAs in distinct striatal regions. Male Sprague-Dawley rats received a single administration of 15 mg/kg methamphetamine or 30 mg/kg cocaine and were killed 30 min or 3 h later. Methamphetamine and cocaine differentially affected preprodynorphin mRNA in striatum after 3 h. Densitometric analysis of film autoradiograms revealed that cocaine, but not methamphetamine, significantly increased preprodynorphin. This effect was seen throughout rostral striatum and dorsally in caudal striatum. However, specific analysis of "patches" in which preprodynorphin expression is high revealed a significantly greater effect of methamphetamine versus cocaine. In contrast, both cocaine and methamphetamine had similar effects on preproenkephalin mRNA, decreasing levels after 30 min in rostral striatum and in the core of nucleus accumbens. These data suggest that methamphetamine and cocaine have distinct postsynaptic consequences on striatal neurons.  相似文献   

5.
Acute cocaine administration preferentially increases extracellular dopamine levels in nucleus accumbens as compared with striatum. To investigate whether a differential effect of cocaine on dopamine uptake could explain this observation, we used in vivo electrochemical recordings in anesthetized rats in conjunction with a paradigm that measures dopamine clearance and diffusion without the confounding effects of release. When a finite amount of dopamine was pressure-ejected at 5-min intervals from a micropipette adjacent to the electrode, transient and reproducible increases in dopamine levels were detected. In response to 15 mg/kg of cocaine-HCl (i.p.), these signals increased in nucleus accumbens, indicating significant inhibition of the dopamine transporter. The time course of the dopamine signal increase paralleled that of behavioral changes in unanesthetized rats receiving the same dose of cocaine. In contrast, no change in the dopamine signal was detected in dorsal striatum; however, when the dose of cocaine was increased to 20 mg/kg, enhancement of the dopamine signal occurred in both brain areas. Quantitative autoradiography with [3H]mazindol revealed that the affinity of the dopamine transporter for cocaine was similar in both brain areas but that the density of [3H]mazindol binding sites in nucleus accumbens was 60% lower than in dorsal striatum. Tissue dopamine levels in nucleus accumbens were 44% lower. Our results suggest that a difference in dopamine uptake may explain the greater sensitivity of nucleus accumbens to cocaine as compared with dorsal striatum. Furthermore, this difference may be due to fewer dopamine transporter molecules in nucleus accumbens for cocaine to inhibit, rather than to a higher affinity of the transporter for cocaine.  相似文献   

6.
Abstract: The striatum is vulnerable to hypoxic-ischemic injury during development. In a rodent model of perinatal hypoxia-ischemia, it has been shown that striatal neurons are not uniformly vulnerable. Cholinergic neurons and NADPH-diaphorase-positive neurons are relatively spared. However, it is unknown what classes of striatal neurons are relatively sensitive. One of the major classes of striatal neurons uses enkephalin as a neurotransmitter. We have studied the effect of early hypoxic-ischemic injury on this class of neurons using a quantitative solution hybridization assay for preproenkephalin mRNA in conjunction with in situ hybridization. Hypoxia-ischemia results in an early (up to 24 h) decrease in striatal preproenkephalin mRNA, which is shown by in situ hybridization to occur mainly in the dorsal portion of the striatum. By 14 days, whole striatal preproenkephalin mRNA and total enkephalin-containing peptide levels are normal. However, at 14 days, in situ hybridization reveals that regions of complete preproenkephalin mRNA-positive neuron loss remain in the dorsal region. Normal whole striatal levels are due to an up-regulation of preproenkephalin mRNA expression in the ventrolateral region of the injured striatum. Given the important role that the enkephalin-containing striatal efferent projection plays in regulating motor function, its relative loss may be important in the chronic disturbances of motor control observed in brain injury due to developmental hypoxic-ischemic injury.  相似文献   

7.
8.
Abstract: To examine potential alteration of GABAergic striatal neurons in Alzheimer's disease, we used quantitative in situ hybridization to analyze the messenger RNA coding for Mr 67,000 glutamic acid decarboxylase (GAD67 mRNA) in the striatum of five patients with Alzheimer's disease (AD) and nine matched control subjects. We found a 51–57% increase in the optical density of hybridization signal in the caudate nucleus and putamen, corresponding to a 30–42% increase in the number of neurons expressing a detectable amount of GAD67 mRNA. By contrast, no alteration was observed in the ventral striatum. The expression of GAD67 mRNA per neuron was similar in AD and control subjects both in the dorsal and ventral striatum. Taken together, our data indicate that, in AD, GABAergic neurotransmission is increased in the dorsal striatum but not in the ventral striatum. We suggest that this increased GABAergic neurotransmission may explain extrapyramidal signs often observed in AD.  相似文献   

9.
Abstract: We have isolated several new genes that are specifically expressed by oligodendrocytes in the CNS. This was achieved by differential screening of a rat spinal cord cDNA library with probes derived from normal and from oligodendrocyte-free spinal cord mRNAs. Four of these genes are exclusively expressed by oligodendrocytes: Three of these are not related to known genes, whereas one encodes the myelin oligodendrocyte glycoprotein (MOG). Four other genes are expressed by oligodendrocytes as well as by Schwann cells. One gene codes for apolipoprotein D, which is thought to be involved in lipid metabolism. A second cDNA sequence codes for the recently identified galactosylceramide-synthesizing enzyme UDP-galactose:ceramide galactosyl-transferase. The third gene encodes a small protein with four putative transmembrane domains that is related to a T-lymphocyte-specific membrane protein, MAL. The fourth gene encodes the rat homologue of the stearyl-CoA-desaturase 2 (SCD2) gene, which is specifically expressed in the nervous system and involved in the synthesis and regulation of long-chain unsaturated fatty acids essential for myelination. Finally, we found that a member of the β-tubulin family is highly expressed in oligodendrocytes as well as neurons. The identification of several new proteins that may play a role in myelin synthesis and sheath formation will lead to new insight into this complex mechanism.  相似文献   

10.
In submammalian animals including chicks, the retina contains oligodendrocytes (OLs), and axons in the optic fiber layer are wrapped with compact myelin within the retina; however, the expression of myelin genes in the chick retina has not been demonstrated yet. In the present study, we examined the expression of three myelin genes (proteolipid protein, PLP; myelin basic protein, MBP; cyclic nucleotide phosphodiesterase, CNP) and PLP in the developing chick retina, in comparison to the localization of Mueller cells. In situ hybridization demonstrated that all three myelin genes began to be expressed at E14 in the chick embryo retina. They are mostly restricted to the ganglion cell layer and the optic fiber layer, with a few exceptions in the inner nuclear layer where Mueller cells reside; however, PLP mRNA+ cells do not express glutamine synthetase, or vice versa. The present results elucidate that myelin genes are expressed only by OLs that are mostly localized in the innermost layer of the developing chick retina.  相似文献   

11.
茉莉酸诱导的春化相关基因表达模式 徐云远 种康* 许智宏* 谭克辉 (中国科学院植物研究所资源植物分子与发育生物学研究中心,北京100093)  相似文献   

12.
The levels of myelin basic protein, proteolipid protein, and 2',3'-cyclic nucleotide 3'-phosphohydrolase (EC 3.1.4.37) in cerebral hemispheres of wild-type, heterozygous jp/+, and hemizygous jp/Y mice of different ages were determined by radioimmunoassay and immunoblotting. In jp/Y brain the level of myelin basic protein was 8% that of wild-type at all ages. All forms of the protein were reduced although the 21.5K Mr form was relatively spared at early ages compared to the 18.5K, 17K, and 14K Mr forms. The level of 2',3'-cyclic nucleotide 3'-phosphohydrolase was 8% that of wild-type at all ages, and proteolipid protein was undetectable at any age. These results are consistent with the hypothesis that the jimpy mutation blocks myelin morphogenesis subsequent to incorporation of 21.5K Mr myelin basic protein but prior to incorporation of proteolipid protein. In jp/+ brain the levels of the three proteins were reduced commensurately to 60-70% those of wild-type. The deficit was apparent as early as 10 days after birth and remained proportionately constant throughout development. These results suggest that in jp/+ mice, X-chromosome inactivation produces a mosaic population of functionally wild-type and functionally jimpy oligodendrocytes. The former elaborate normal amounts of myelin but do not completely compensate for the myelin deficit due to the latter.  相似文献   

13.
We measured proenkephalin (PEK) mRNA levels in the anterior and medial aspects of the caudate-putamen (CPU) and in the nucleus accumbens (NAc) of the rat by in situ hybridization histochemistry after chronic treatment for 21 days with typical (haloperidol and prolixin) and atypical (molindone, thioridazine, and clozapine) neuroleptics. Chronic administration with these drugs resulted in PEK mRNA levels that were 60-80% higher than controls in the anterior and medial aspects of the CPU but only 25-30% over controls in the NAc. All three atypical neuroleptics studied increased PEK mRNA in the following order: anterior-CPU, thioridazine greater than clozapine and molindone; medial-CPU, thioridazine and molindone greater than clozapine; and NAc, thioridazine much greater than molindone and clozapine. Chronic treatment with the specific dopamine D2 antagonist sulpiride also caused elevation in PEK mRNA levels in all three brain regions studied whereas the specific serotonin S2 receptor blocker, cinanserin, had no significant effects on PEK mRNA levels. These results are consistent with the hypothesis that elevated levels of the enkephalins in the mesolimbic system may be necessary for antipsychotic activity. They also support the idea that the undesirable motoric signs and symptoms observed after chronic treatment with typical neuroleptics may not be the result of increased levels of enkephalins in the basal ganglia because atypical neuroleptics which are almost totally devoid of these side effects caused similar increases in PEK mRNA in the CPU.  相似文献   

14.
Abstract: Transketolase (TK; EC 2.2.1.1) is a key pentose phosphate shunt enzyme that plays an important role in the production of reducing equivalents and pentose sugars. TK activity declines in the brains of patients with Alzheimer's disease or Wernicke-Korsakoff syndrome, as well as in thiamine-deficient rats. Understanding the role of TK in the pathophysiology of these neurodegenerative conditions requires knowledge of its regional, cellular, and subcellular distribution within the brain. The current study employed in situ hybridization and immunocytochemistry to examine the distribution of TK mRNA and its encoded protein in adult rat brain. TK mRNA and protein were widely distributed throughout the brain. However, they were enriched in selective perikarya in the piriform cortex, nucleus of the diagonal band, red nucleus, dorsal raphe, pontine nucleus, locus coeruleus, trapezoid, inferior olive, and several cranial nerve nuclei. Lower expression of TK mRNA and protein occurred in layer V of cortex, olfactory tubercle, ventral pallidum, medial septal nucleus, hippocampus, thalamic and hypothalamic nuclei, mammillary body, central gray, and the substantia nigra. TK immunoreactivity also occurred in the nuclei of ubiquitously distributed glial cells, as well as ependymal cells. The heterogeneous distribution of TK may reflect a variety of metabolic activities among different brain regions but does not provide a simple molecular explanation for selective cell death in either thiamine deficiency or other conditions where TK is reduced.  相似文献   

15.
16.
王文亮  王春杰等 《Virologica Sinica》2001,16(4):325-329,F003
采用原位分子杂交方法检测HCV RNA及HBV X基因;采用免疫组织化学方法研究HCV核心抗原,非结构区C33c抗原及HBxAg在肝细胞肝癌中的定位及分布。结果表明(1)HCV RNA、HBV X基因在肝细胞肝癌组织检出率分别为40%(55/136)和82%(112/136)。HCV RNA定位于癌细胞的胞浆内,阳性细胞呈散在、灶状及弥漫分布三种形式;HBV X基因在肝癌细胞中的分布呈胞浆型、核型及核浆型,阳性细胞也呈上述三种分布形式;(2)HCV C33c抗原、核心抗原在肝细胞肝癌中的阳性率为81%(133/164)及86%(141/164)。C33c抗原定位于癌细胞及肝细胞的浆内;核心抗原毁定位于癌细胞核中,又可定位于胞浆中。C33c抗原阳性细胞以灶状分布为主;而核心抗原阳性细胞在癌组织以弥漫核阳性常见,在癌旁肝组织以胸浆阳性为主;(3)HBxAg在肝细胞肝 癌中的检出率为75%(123/164),C33c和HBxAg二者同时阳性占63%(103/164)。HCV感染在我国肝细胞肝癌中比较普遍,HCV和HBV重叠感染占相当比例,可能在肝细胞肝癌的发生中起着重要作用。  相似文献   

17.
Abstract: The mRNA encoding μ-opioid receptors is expressed in neurons of the globus pallidus, a region of the basal ganglia that receives a dense enkephalinergic innervation from the striatum. The regulation of the mRNAs encoding the opioid peptide enkephalin in the striatum and the μ-opioid receptor in the globus pallidus was examined with in situ hybridization histochemistry following short- or long-term haloperidol treatments, which alter striatal enkephalin mRNA levels. Animals were administered haloperidol daily for 3 or 7 days (1 mg/kg, s.c.) or continuously for 8 months (1 mg/kg, depot followed by oral). Enkephalin and μ-opioid receptor mRNA levels were unchanged after 3 days of haloperidol treatment. In contrast, the enkephalin mRNA level was increased in the striatum, and μ-opioid receptor mRNA levels were markedly decreased in the globus pallidus after 7 days of haloperidol administration. Similar effects were observed in rats treated with haloperidol for 8 months. The results provide the first evidence of regulation of μ-opioid receptor mRNA in vivo.  相似文献   

18.
19.
20.
Decarboxylation of phenylalanine by aromatic L-amino acid decarboxylase (AADC) is the rate-limiting step in the synthesis of 2-phenylethylamine (PE), a putative modulator of dopamine transmission. Because neuroleptics increase the rate of accumulation of striatal PE, these studies were performed to determine whether this effect may be mediated by a change in AADC activity. Administration of the D1 antagonist SCH 23390 at doses of 0.01-1 mg/kg significantly increased rat striatal AADC activity in an in vitro assay (by 16-33%). Pimozide, a D2-receptor antagonist, when given at doses of 0.01-3 mg/kg, also increased AADC activity in the rat striatum (by 25-41%). In addition, pimozide at doses of 0.3 and 1 mg/kg increased AADC activity in the nucleus accumbens (by 33% and 45%) and at doses of 0.1, 0.3, and 1 mg/kg increased AADC activity in the olfactory tubercles (by 23%, 30%, and 28%, respectively). Analysis of the enzyme kinetics indicated that the Vmax increased with little change in the Km with L-3,4-dihydroxyphenylalanine as substrate. The AADC activity in the striatum showed a time-dependent response after the administration of SCH 23390 and pimozide: the activity was increased within 30 min and the increases lasted 2-4 h. Inhibition of protein synthesis by cycloheximide (10 mg/kg, 0.5 h) had no effect on the striatal AADC activity or on the increases in striatal AADC activity produced by pimozide or SCH 23390. The results indicate that the increases in AADC activity induced by dopamine-receptor blockers are not due to de novo synthesis of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号