首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The primary human bone-derived cell culture technique is used as a model to study human osteogenesis. Compared to cell line cultures, primary osteoprogenitor and osteoblast cultures provide more complex information about osteogenesis, bone remodeling and regeneration than cell line cultures.

Methods

In this study, we isolated human bone-derived cells (HBDCs) and promoted their differentiation into osteoblasts. The following parameters were evaluated: cell number and viability, total protein expression, alkaline phosphatase activity, collagenous matrix production and osteogenic genes expression, i.e., gene coding for type I collagen and alkaline phosphatase.

Results

It was proved the results show that HBDCs intensively proliferate during the first 7 days of culture followed by differentiation accompanied by an increase in alkaline phosphatase activity. Moreover, it was observed that during the differentiation of HBDCs, the expression of integrin β1 increased.

Conclusions

The process was also accompanied by changes in cell shape and rearrangement of the actin cytoskeleton and focal contacts containing FAK and the integrin β1 subunit. We suggest that the β1 integrin subunit may be a suitable new target in studies of the differentiation of primary human osteoblasts in culture.
  相似文献   

2.

Background

An influenza H3N2 epidemic occurred throughout Southern China in 2012.

Methods

We analyzed the hemagglutinin (HA) and neuraminidase (NA) genes of influenza H3N2 strains isolated between 2011–2012 from Guangdong. Mutation sites, evolutionary selection, antigenic sites, and N-glycosylation within these strains were analyzed.

Results

The 2011–2012 Guangdong strains contained the HA-A214S, HA-V239I, HA-N328S, NA-L81P, and NA-D93G mutations, similar to those seen in the A/ Perth/16/2009 influenza strain. The HA-NSS061–063 and NNS160–162 glycosylation sites were prevalent among the 2011–2012 Guangdong strains but the NA-NRS402–404 site was deleted. Antigenically, there was a four-fold difference between A/Perth/16/2009 -like strains and the 2011–2012 Guangdong strains.

Conclusion

Antigenic drift of the H3N2 subtype contributed to the occurrence of the Southern China influenza epidemic of 2012.
  相似文献   

3.

Background

The aim of this study was to identify fibrosis-related serological surrogate outcome measures in patients with immunoglobulin G4-related disease (IgG4-RD).

Methods

This was a clinical observational study of 72 patients with untreated IgG4-RD from four institutions in Japan. The serum concentrations of growth differentiation factor 15 (GDF-15), CCL2, hyaluronic acid (HA), amino-terminal propeptide of type III procollagen (PIIINP), and tissue inhibitor of metalloproteinases 1 (TIMP-1) were measured by enzyme-linked immunosorbent assays. The enhanced liver fibrosis (ELF) score was calculated from the TIMP-1, PIIINP, and HA values. We evaluated associations between the values of these biomarkers and laboratory data, the IgG4-RD responder index (IgG4-RD RI) score, and organ involvements.

Results

Compared with the 44 healthy controls, the patients with IgG4-RD showed significantly elevated serum concentrations of GDF-15, MCP-1, HA, PIIINP, and TIMP-1 and ELF scores. The patients’ serum concentrations of GDF-15, CCL2, HA, and TIMP-1 (but not PIIINP) were positively correlated with each other. Among them, serum GDF-15 most efficiently distinguished patients with IgG4-RD from healthy controls. Serum GDF-15 was not associated with the IgG4-RD RI score or the number of organ involvements but was independently associated with the presence of retroperitoneal fibrosis and with parotid gland involvement.

Conclusions

We observed increased serological surrogate outcome measures of fibrosis in IgG4-RD. GDF-15 may precisely reflect the fibrotic degree in patients with IgG4-RD.
  相似文献   

4.

Objectives

The single radial immunodiffusion (SRID) assay, used to quantify hemagglutinin (HA) in influenza vaccines, requires reference reagents; however, because centralized production of reference reagents may slow the emergency deployment of vaccines, alternatives are needed.

Results

We investigated the production of HA proteins using recombinant DNA technology, rather than a traditional egg-based production process. The HA proteins were then used in an SRID assay as a reference antigen. We found that HA can be quantified in both egg-based and cell-based influenza vaccines when recombinant HAs (rHAs) are used as the reference antigen. Furthermore, we confirmed that rHAs obtained from strains with pandemic potential, such as H5N1, H7N3, H7N9, and H9N2 strains, can be utilized in the SRID assay. The rHA production process takes just one month, in contrast to the traditional process that takes three to four months.

Conclusions

The use of rHAs may reduce the time required to produce reference reagents and facilitate timely introduction of vaccines during emergencies.
  相似文献   

5.

Background

Fibroblast growth factor receptor 2 (FGFR2) play a vital role in skeletogenesis. However, the molecular mechanisms triggered by FGFR2 in osteoblasts are still not fully understood. In this study, proteomics and bioinformatics analysis were performed to investigate changes in the protein profiles regulated by FGFR2, with the goal of characterizing the molecular mechanisms of FGFR2 function in osteoblasts.

Methods

In this study, FGFR2-overexpression cell line was established using the lentivirus-packaging vector in human osteoblasts (hFOB1.19). Next, the isobaric tags for relative and absolute quantitation (iTRAQ) in combination with the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was used to compare the proteomic changes between control and FGFR2-overexpression cells. Thresholds (fold-change of?≥?1.5 and a P-value of?<?0.05) were selected to determine differentially expressed proteins (DEPs). The bioinformatics analysis including GO and pathway analysis were done to identify the key pathways underlying the molecular mechanism.

Results

A Total of 149 DEPs was identified. The DEPs mainly located within organelles and involved in protein binding and extracellular regulation of signal transduction. ColI, TNC, FN1 and CDKN1A were strikingly downregulated while UBE2E3, ADNP2 and HSP70 were significantly upregulated in FGFR2-overexpression cells. KEEG analysis suggested the key pathways included cell death, PI3K-Akt signaling, focal adhesion and cell cycle.

Conclusions

To our knowledge, this is the first protomic research to investigate alterations in protein levels and affected pathways in FGFR2-overexpression osteoblasts. Thus, this study not only provides a comprehensive dataset on overall protein changes regulated by FGFR2, but also shed light on its potential molecular mechanism in human osteoblasts.
  相似文献   

6.

Background

Pseudomyxoma peritonei is a rare condition consisting of mucinous ascites, most commonly arising from mucinous tumors of the appendix and occasionally from the ovary. Very rarely mucinous implants arise in the retroperitoneum without any intra-peritoneal involvement. This has been termed as pseudomyxoma extraperitonei.

Case presentation

We report a case of a 57 year old man who developed pseudomyxoma extraperitonei, 35 years after undergoing an appendicectomy for a perforated appendix.

Conclusions

Pseudomyxoma extraperitonei has been previously reported, however we report the longest incubation period of 35 years for this condition.
  相似文献   

7.

Background

In vitro studies of osteoblasts traditionally use Alizarin Red as a golden standard for the detection and quantification of mineralization, which is a marker of osteoblast differentiation. However, this method presents a number of drawbacks, including the need to fix cells, which prevents additional measurements. Years ago, Calcein Green was proposed as an alternative to Alizarin Red, with the advantage to be directly detectable in live cells. However, the protocol was still time-consuming, and it never managed to replace Alizarin Red. Now, with more efficient imaging systems, we present a protocol using Calcein Green which provides significant advantages.

Results

The osteoblast mineralization was efficiently detected and accurately quantified in real time at any desired time point across the entire differentiation period, with a minimum time expenditure.

Conclusions

The combination of Calcein Green and the real-time imaging station IncuCyte ZOOM can efficiently replace the Alizarin Red method, and allows very accurate and time-saving assessment of the level and the dynamics of matrix mineralization.
  相似文献   

8.

Aims

We investigated whether density fractionation can be used to determine the distribution of organic phosphorus (OP) between free and mineral-associated soil organic matter (SOM).

Methods

We performed density fractionations using sodium polytungstate solution (specific gravity 1.6 g cm?3) on 20 soils from UK semi-natural and pasture ecosystems, to obtain a light fraction (LF) and a heavy fraction (HF) for each soil. The fractions were quantified by weight, and analysed for organic carbon (OC), total N (TN), total P (TP), inorganic P (IP), and OP (by difference).

Results

Good recoveries of soil mass (96%), OC and TN (both ~ 90%) were obtained, but recovery of OP only averaged 56%. The average P:C ratio of HF SOM exceeded that of LF SOM by a factor of six, greater than the factor of two obtained for TN:OC. For the soils studied, the elements of SOM were predominantly in the HF, with averages of 75% for C, 82% for N, and 90% for P.

Conclusions

The incomplete recovery of OP demands further work. Nonetheless, the results show that HF SOM is much richer in P than LF SOM.
  相似文献   

9.

Background

Human hyaluronic acid (HA) molecules are synthesized by three membrane spanning Hyaluronic Acid Synthases (HAS1, HAS2 and HAS3). Of the three, HAS1 is found to be localized more into the cytoplasmic space where it synthesizes intracellular HA. HA is a ubiquitous glycosaminoglycan, mainly present in the extracellular matrix (ECM) and on the cell surface, but are also detected intracellularly. Accumulation of HA in cancer cells, the cancer-surrounding stroma, and ECM is generally considered an independent prognostic factors for patients. Higher HA production also correlates with higher tumor grade and more genetic heterogeneity in multiple cancer types which is known to contribute to drug resistance and results in treatment failure. Tumor heterogeneity and intra-tumor clonal diversity are major challenges for diagnosis and treatment. Identification of the driver pathway(s) that initiate genomic instability, tumor heterogeneity and subsequent phenotypic/clinical manifestations, are fundamental for the diagnosis and treatment of cancer. Thus far, no evidence was shown to correlate intracellular HA status (produced by HAS1) and the generation of genetic diversity in tumors.

Methods

We tested different cell lines engineered to induce HAS1 expression. We measured the epithelial traits, centrosomal abnormalities, micronucleation and polynucleation of those HAS1-expressing cells. We performed real-time PCR, 3D cell culture assay, confocal microscopy, immunoblots and HA-capture methods.

Results

Our results demonstrate that overexpression of HAS1 induces loss of epithelial traits, increases centrosomal abnormalities, micronucleation and polynucleation, which together indicate manifestation of malignant transformation, intratumoral genetic heterogeneity, and possibly create suitable niche for cancer stem cells generation.

Conclusions

The intracellular HA produced by HAS1 can aggravate genomic instability and intratumor heterogeneity, pointing to a fundamental role of intracellular HA in cancer initiation and progression.
  相似文献   

10.

Background

ADAM23 is widely expressed in the embryonic central nervous system and plays an important role in tissue formation.

Results

In this study, we showed that ADAM23 contributes to cell survival and is involved in neuronal differentiation during the differentiation of human neural progenitor cells (hNPCs). Upregulation of ADAM23 in hNPCs was found to increase the number of neurons and the length of neurite, while its downregulation decreases them and triggers cell apoptosis. RNA microarray analysis revealed mechanistic insights into genes and pathways that may become involved in multiple cellular processes upon up- or downregulation of ADAM23.

Conclusions

Our results suggest that ADAM23 regulates neuronal differentiation by triggering specific signaling pathways during hNPC differentiation.
  相似文献   

11.

Background

The biomedical use of nanosized materials is rapidly gaining interest, which drives the quest to elucidate the behavior of nanoparticles (NPs) in a biological environment. Apart from causing direct cell death, NPs can affect cellular wellbeing through a wide range of more subtle processes that are often overlooked. Here, we aimed to study the effect of two biomedically interesting NP types on cellular wellbeing.

Results

In the present work, gold and SiO2 NPs of similar size and surface charge are used and their interactions with cultured cells is studied. Initial screening shows that at subcytotoxic conditions gold NPs induces cytoskeletal aberrations while SiO2 NPs do not. However, these transformations are only transient. In-depth investigation reveals that Au NPs reduce lysosomal activity by alkalinization of the lysosomal lumen. This leads to an accumulation of autophagosomes, resulting in a reduced cellular degradative capacity and less efficient clearance of damaged mitochondria. The autophagosome accumulation induces Rac and Cdc42 activity, and at a later stage activates RhoA. These transient cellular changes also affect cell functionality, where Au NP-labelled cells display significantly impeded cell migration and invasion.

Conclusions

These data highlight the importance of in-depth understanding of bio-nano interactions to elucidate how one biological parameter (impact on cellular degradation) can induce a cascade of different effects that may have significant implications on the further use of labeled cells.
  相似文献   

12.

Objectives

To investigate the effects of tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β1) on the proliferation and differentiation of tendon-derived stem cells (TDSC).

Results

TNF-α inhibits the proliferation and tenogenic/osteogenic differentiation of TDSC but, after simultaneous or sequential treatment with TGF-β1 and TNF-α, the expression of tenogenic/osteogenic-related marker and proliferation of TDSC was significantly increased. During these processes, Smad2/3 and Smad1/5/8 were highly phosphorylated, meaning that the TGF-β and BMP signaling pathways were highly activated. Further study revealed that the expression of Inhibitor-Smad appeared to be negatively correlated to the proliferation and differentiation of TDSC.

Conclusions

Combining the use of TNF-α and TGF-β1 could improve the proliferation and differentiation of TDSC in vitro, and the expression of I-Smad is negatively correlated with TDSC proliferation and differentiation.
  相似文献   

13.

Introduction

Molecular factors are differentially observed in various bent sectors of poplar (Populus nigra) woody taproots. Responses to stress are modulated by a complex interplay among different hormones and signal transduction pathways. In recent years, metabolomics has been recognized as a powerful tool to characterize metabolic network regulation, and it has been widely applied to investigate plant responses to biotic and abiotic stresses.

Objectives

In this paper we used metabolomics to understand if long term-bending stress induces a “spatial” and a “temporal” metabolic reprogramming in woody poplar roots.

Methods

By NMR spectroscopy and statistical analysis we investigated the unstressed and three portions of stressed root (above-bent, bent, and below-bent) sectors collected at 12 (T0), 13 (T1) and 14 (T2) months after stress induction.

Results

The data indicate a clear between-class separation of control and stressed regions, based on the metabolites regulation, during both spatial and temporal changes. We found that taproots, as a consequence of the stress, try to restore homeostasis and normal metabolic fluxes thorough the synthesis and/or accumulation of specific compounds related to mechanical forces distribution along the bent taproot.

Conclusion

The data demonstrate that the impact of mechanical stress on plant biology can efficiently be studied by NMR-based metabolomics.
  相似文献   

14.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

15.

Objective

To investigate the effects of heat-killed Enterococcus faecalis ATCC 29212 and P25RC clinical strain (derived from an obturated root canal with apical periodontitis) on osteoclast differentiation within an osteoblast/osteoclast co-culture system.

Results

Heat-killed E. faecalis significantly increased the proportion of multinucleated osteoclastic cells (MNCs) within the co-culture system. The IL-6 level was significantly increased upon exposure to heat-killed E. faecalis. Gene expression levels of NFATc1 and cathepsin K were significantly up-regulated compared to the untreated control. EphrinB2 and EphB4 expressions at both the mRNA and protein levels were also significantly upregulated compared to the untreated control.

Conclusions

Heat-killed E. faecalis can induce osteoclast differentiation within the osteoblast/osteoclast co-culture system in vitro, possibly through ephrinB2-EphB4 bidirectional signaling.
  相似文献   

16.

Objectives

The purpose of this study was to develop a facile and efficient method to enhance the stability and activity of lactoperoxidase (LPO) by using its immobilization on graphene oxide nanosheets (GO-NS).

Methods

Following the LPO purification from bovine whey, it was immobilized onto functionalized GO-NS using glutaraldehyde as cross-linker. Kinetic properties and stability of free and immobilized LPO were investigated.

Results

LPO was purified 59.13 fold with a specific activity of 5.78 U/mg protein. The successful immobilization of LPO on functionalized GO-NS was confirmed by using dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FT-IR). The overall results showed that the stability of the immobilized LPO was considerably improved compared to free LPO. Apparent Km and Vmax of LPO also indicated that the immobilized enzyme had greater affinity to the substrate than the native enzyme.

Conclusions

Graphene oxide nanosheets are effective means for immobilization of LPO.
  相似文献   

17.

Background

There are few in-flight studies of cognition-related cerebral oxygen status in helicopter pilots.

Methods

Four male helicopter pilots volunteered for nine sorties during visual flight in a BK117 and UH-60J. The pilots' pre-frontal oxy-hemoglobin (O2Hb) and deoxy-hemoglobin (HHb) concentration were continuously monitored from the right/left sections of the forehead using near-infrared spectrophotometers with a consideration of motion artifacts.

Results

The concentration of O2Hb progressively increased (13.98 μmol?L-1 as a maximum increased concentration) in both the right/left sections of the forehead from the basal level during the heightened cognitive demand of helicopter flight. There was comparatively little change (4.32 μmol?L-1 as a maximum increased concentration) in HHb concentration during measurement of helicopter flight. HHb changes were apparently not affected by a heightened cognitive demand of helicopter pilots.

Conclusion

These results demonstrate that near-infrared spectroscopy, especially O2Hb measurements, provides a sensitive method for the monitoring of cognitive demand (maneuvers) in helicopter pilots.
  相似文献   

18.
19.
20.

Background

The present study analyses the ability of the alveolar slope of the single-breath nitrogen washout test (N2-slope) to diagnose and predict the development of the bronchiolitis obliterans syndrome (BOS).

Methods

We present a retrospective analysis of 61 consecutive bilateral lung or heart-lung transplant recipients who were followed at regular control visits during a three year follow-up. The operating characteristics of the N2-slope to diagnose BOS and potential BOS (BOS 0-p) and to predict BOS were determined based on cut off values of 95% specificity.

Results

The sensitivity of the N2-slope to identify BOS was 96%, and BOS 0-p 100%. The predictive ability to predict BOS with a N2-slope > 478% of the predicted normal was 56%, and if combined with a coincident FEV1 < 90% of the basal value, the predictive ability was 75%.

Conclusions

The predictive ability of either the N2-slope or of FEV1 to diagnose BOS is limited but the combination of the two appears useful. Follow-up protocols of bilateral lung and heart-lung transplant recipients should consider including tests sensitive to obstruction of the peripheral airways.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号