首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sirtuin1 (SIRT1) deacetylase and poly(ADP-ribose)-polymerase-1 (PARP-1) respond to environmental cues, and both require NAD+ cofactor for their enzymatic activities. However, the functional link between environmental/oxidative stress-mediated activation of PARP-1 and SIRT1 through NAD+ cofactor availability is not known. We investigated whether NAD+ depletion by PARP-1 activation plays a role in environmental stimuli/oxidant-induced reduction in SIRT1 activity. Both H2O2 and cigarette smoke (CS) decreased intracellular NAD+ levels in vitro in lung epithelial cells and in vivo in lungs of mice exposed to CS. Pharmacological PARP-1 inhibition prevented oxidant-induced NAD+ loss and attenuated loss of SIRT1 activity. Oxidants decreased SIRT1 activity in lung epithelial cells; however increasing cellular NAD+ cofactor levels by PARP-1 inhibition or NAD+ precursors was unable to restore SIRT1 activity. SIRT1 was found to be carbonylated by CS, which was not reversed by PARP-1 inhibition or selective SIRT1 activator. Overall, these data suggest that environmental/oxidant stress-induced SIRT1 down-regulation and PARP-1 activation are independent events despite both enzymes sharing the same cofactor.  相似文献   

2.
Human immunodeficiency virus (HIV) regulatory protein Tat has pro-oxidant property, which might contribute to Tat-induced long terminal repeat region (LTR) transactivation. However, the intracellular mechanisms whereby Tat triggers ROS production, and the relationship between Tat-induced ROS production and LTR transactivation, are still subject to debate. The present study was undertaken to evaluate the specific effects of Tat on nicotinamide adenine denucleotide phosphate (NADPH) oxidase in MAGI cells, and to determine the specific role of NADPH oxidase in Tat-induced LTR transactivation. Application of Tat to MAGI cells caused increases in ROS formation that were prevented by both pharmacologic NADPH oxidase inhibitors and by siRNA Nox2, but not by other inhibitors of pro-oxidant enzymes or siRNA Nox4. Furthermore, inhibition of NADPH oxidase by both pharmacologic NADPH oxidase inhibitors and by siRNA Nox2 attenuated Tat-induced p65 phosphorylation and IKK phosphorylation. Phosphatidylinositol 3-kinase/Akt signaling pathway was involved in Tat-induced NADPH oxidase stimulation. Finally, NADPH oxidase inhibitors or Nox2 siRNA, but not control siRNA, inhibited Tat-induced LTR transactivation. Tat-induced HIV-1 LTR transactivation was inhibited in wortmannin or LY294002 treated cells compared to control cells. Together, these data describe a specific and biologically significant signaling component of the MAGI cells response to Tat, and suggest the PI3K/Akt signaling pathway might originate in part with Tat-induced activation of NADPH oxidase and LTR transactivation.  相似文献   

3.
4.
热量限制(caloric restriction, CR)可以引起细胞、生物体寿命延长和降低衰老相关疾病的发生,其中Sirtuin起着关键作用.Sirtuin将机体能量代谢和基因表达调控相偶联,通过赖氨酸去乙酰化改变蛋白质的活性和稳定性,从而调节衰老进程.酵母中度CR影响其复制寿命和时序寿命,主要依赖于激活Sir2,增加细胞内NAD+/NADH的比例和调节尼克酰胺浓度来实现.类似的机制也存在于秀丽线虫和果蝇中.哺乳动物在CR条件下SIRT1蛋白表达应答性上升,细胞中NAM磷酸基转移酶能够直接影响NAM和NAD+浓度,并影响SIRT1活性.NO表达增加能导致SIRT1上调和线粒体合成增加.SIRT1可能通过改变组蛋白、p53、NES1、FOXO等底物蛋白的乙酰化影响到细胞和个体的衰老.表明不同生物体中的Sirtuin及其同源类似物在CR条件下对衰老进程和寿命都起着非常重要的作用.  相似文献   

5.
Neural stem/progenitor cell (NSPC) proliferation and self‐renewal, as well as insult‐induced differentiation, decrease markedly with age. The molecular mechanisms responsible for these declines remain unclear. Here, we show that levels of NAD+ and nicotinamide phosphoribosyltransferase (Nampt), the rate‐limiting enzyme in mammalian NAD+ biosynthesis, decrease with age in the hippocampus. Ablation of Nampt in adult NSPCs reduced their pool and proliferation in vivo. The decrease in the NSPC pool during aging can be rescued by enhancing hippocampal NAD+ levels. Nampt is the main source of NSPC NAD+ levels and required for G1/S progression of the NSPC cell cycle. Nampt is also critical in oligodendrocytic lineage fate decisions through a mechanism mediated redundantly by Sirt1 and Sirt2. Ablation of Nampt in the adult NSPCs in vivo reduced NSPC‐mediated oligodendrogenesis upon insult. These phenotypes recapitulate defects in NSPCs during aging, giving rise to the possibility that Nampt‐mediated NAD+ biosynthesis is a mediator of age‐associated functional declines in NSPCs.  相似文献   

6.
Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases that catalyze the deacetylation of proteins such as histones and p53. A sensitive and convenient fluorometric assay for evaluating the SIRT1 enzymatic activity was developed here. Specifically, the remaining NAD+ after the deacetylation was determined by converting NAD+ to a highly fluorescent cyclized α-adduct compound. By this assay, we found that nicotinamide, Cu2+, and Zn2+ antagonize the activity of SIRT1. Resveratrol stimulates the enzymatic activity specifically with 7-amino-4-methylcoumarin (AMC)-labeled acetylated peptide. Epigallocatechin galate (EGCG) inhibits SIRT1 activity with both AMC-labeled and unlabeled peptide. However, a combination of vitamin C with EGCG can reverse the inhibition of EGCG with the unlabeled peptide or stimulate the deacetylation of AMC-labeled peptide by SIRT1. The assay does not require any isotopic material and thus is biologically safe. It can be adapted to a 96-well microplate for high-throughput screening. Notably, the acetylated peptides with or without fluorescent labels may be used in the assay, which facilitates the substrate specificity study of SIRT1 activators or inhibitors in vitro.  相似文献   

7.
8.
The sirtuin SIRT1 is an ubiquitous NAD+ dependent deacetylase that plays a role in biological processes such as longevity and stress response. In cardiac models, SIRT1 is associated to protection against many stresses. However, the link between SIRT1 and heart hypertrophy is complex and not fully understood. This study focuses specifically on the response of SIRT1 to the α-adrenergic agonist phenylephrine in H9c2 cardiac myoblasts, a cell model of cardiac hypertrophy. After 24 and 48 h of phenylephrine treatment, SIRT1 expression and deacetylase activity were significantly increased. SIRT1 upregulation by phenylephrine was not associated to changes in NAD+ levels, but was blocked by inhibitors of AMP-activated Protein Kinase (AMPK) or by AMPK knockdown by siRNA. When SIRT1 was inhibited with sirtinol or downregulated by siRNA, H9c2 cell viability was significantly decreased following phenylephrine treatment, showing that SIRT1 improves cell survival under hypertrophic stress. We so then propose that the increase in SIRT1 activity and expression in H9c2 cells treated with phenylephrine is an adaptive response to the hypertrophic stress, suggesting that adrenergic stimulation of heart cells activates hypertrophic programming and at the same time also promotes a self-protecting and self-regulating mechanism.  相似文献   

9.
10.
Park G  Jeong JW  Kim JE 《FEBS letters》2011,(1):219-224
One of the functions mediated by sirtuin 1 (SIRT1), the NAD+-dependent protein deacetylase, has been suggested to be neuroprotective since resveratrol, a SIRT1 activator, inhibits 1-methyl-4-phenylpyridinium ion (MPP+)-induced cytotoxicity. In this study, we show that SIRT1 siRNA transfection blocks MPP+-induced apoptosis in SH-SY5Y cells. The ratio of potential pro-apoptotic BNIP2 to antiapoptotic BCL-xL was attenuated in SIRT1-deficient cells following MPP+ treatment. In addition, BNIP2 shRNA-transfected cells showed reduced cleavage of PARP-1, while BNIP2 overexpression intensified the cleavage in MPP+-treated SH-SY5Y cells, suggesting that BNIP2 participates in the MPP+-induced apoptosis. Overall, these data imply that SIRT1 may mediate MPP+-induced cytotoxicity, possibly through the regulation of BNIP2.  相似文献   

11.
12.
Following discovery of NAD+-dependent reactions that control gene expression, cytoprotection, and longevity, there has been a renewed therapeutic interest in precursors, such as nicotinamide and its derivatives. We tested 20 analogues of nicotinamide for their ability to protect endothelial cells from peroxynitrite stress and their effect on poly (ADP-ribose) polymerase (PARP) activity. Several nicotinamide derivatives protected endothelial cells from peroxynitrite-induced depletion of cellular NAD+ and ATP concentrations, but only some of these compounds inhibited PARP. We conclude that some nicotinamide derivatives provide protection of endothelial cells against peroxynitrite-induced injury independent of inhibition of PARP activity. Preservation of the NAD+ pool was a common effect of these compounds.  相似文献   

13.
14.
We have previously shown that GABA protects pancreatic islet cells against apoptosis and exerts anti-inflammatory effects. Notably, GABA inhibited the activation of NF-κB in both islet cells and lymphocytes. NF-κB activation is detrimental to beta cells by promoting apoptosis. However, the mechanisms by which GABA mediates these effects are unknown. Because the above-mentioned effects mimic the activity of sirtuin 1 (SIRT1) in beta cells, we investigated whether it is involved. SIRT1 is an NAD+-dependent deacetylase that enhances insulin secretion, and counteracts inflammatory signals in beta cells. We found that the incubation of a clonal beta-cell line (rat INS-1) with GABA increased the expression of SIRT1, as did GABA receptor agonists acting on either type A or B receptors. NAD+ (an essential cofactor of SIRT1) was also increased. GABA augmented SIRT1 enzymatic activity, which resulted in deacetylation of the p65 component of NF-κB, and this is known to interfere with the activation this pathway. GABA increased insulin production and reduced drug-induced apoptosis, and these actions were reversed by SIRT1 inhibitors. We examined whether SIRT1 is similarly induced in newly isolated human islet cells. Indeed, GABA increased both NAD+ and SIRT1 (but not sirtuins 2, 3 and 6). It protected human islet cells against spontaneous apoptosis in culture, and this was negated by a SIRT1 inhibitor. Thus, our findings suggest that major beneficial effects of GABA on beta cells are due to increased SIRT1 and NAD+, and point to a new pathway for diabetes therapy.  相似文献   

15.
SIRT1 is a NAD+-dependent deacetylase. It deacetylates a broad range of substrates and is involved in multiple diseases such as type 2 diabetes and cancer. Here we discovered a new class of SIRT1 inhibitors with the scaffold of 3-(furan-2-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole. The inhibitors up-regulate acetyl p53 level in human breast cells MCF-7. The docking simulations indicated that the scaffold and the R-substituents of the inhibitors bind in the C and D pocket of SIRT1, respectively, which was supported by the structure–activity relationship and SIRT1 mutagenesis studies. We propose that binding of the inhibitors repels the entering of the nicotinamide moiety of NAD+ to the C pocket, prevents its transformation to the productive conformation and therefore inhibits the deacetylation catalyzed by SIRT1.  相似文献   

16.
Sirtuins are key regulators of many cellular functions including cell growth, apoptosis, metabolism, and genetic control of age-related diseases. Sirtuins are themselves regulated by their cofactor nicotinamide adenine dinucleotide (NAD+) as well as their reaction product nicotinamide (NAM), the physiological concentrations of which vary during the process of aging. Nicotinamide inhibits sirtuins through the so-called base exchange pathway, wherein rebinding of the reaction product to the enzyme accelerates the reverse reaction. We investigated the mechanism of nicotinamide inhibition of human SIRT3, the major mitochondrial sirtuin deacetylase, in vitro and in silico using experimental kinetic analysis and Molecular Mechanics-Poisson Boltzmann/Generalized Born Surface Area (MM-PB(GB)SA) binding affinity calculations with molecular dynamics sampling. Through experimental kinetic studies, we demonstrate that NAM inhibition of SIRT3 involves apparent competition between the inhibitor and the enzyme cofactor NAD+, contrary to the traditional characterization of base exchange as noncompetitive inhibition. We report a model for base exchange inhibition that relates such kinetic properties to physicochemical properties, including the free energies of enzyme-ligand binding, and estimate the latter through the first reported computational binding affinity calculations for SIRT3:NAD+, SIRT3:NAM, and analogous complexes for Sir2. The computational results support our kinetic model, establishing foundations for quantitative modeling of NAD+/NAM regulation of mammalian sirtuins during aging and the computational design of sirtuin activators that operate through alleviation of base exchange inhibition.  相似文献   

17.
18.
《PLoS biology》2021,19(11)
Several studies have revealed a correlation between chronic inflammation and nicotinamide adenine dinucleotide (NAD+) metabolism, but the precise mechanism involved is unknown. Here, we report that the genetic and pharmacological inhibition of nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme in the salvage pathway of NAD+ biosynthesis, reduced oxidative stress, inflammation, and keratinocyte DNA damage, hyperproliferation, and cell death in zebrafish models of chronic skin inflammation, while all these effects were reversed by NAD+ supplementation. Similarly, genetic and pharmacological inhibition of poly(ADP-ribose) (PAR) polymerase 1 (Parp1), overexpression of PAR glycohydrolase, inhibition of apoptosis-inducing factor 1, inhibition of NADPH oxidases, and reactive oxygen species (ROS) scavenging all phenocopied the effects of Nampt inhibition. Pharmacological inhibition of NADPH oxidases/NAMPT/PARP/AIFM1 axis decreased the expression of pathology-associated genes in human organotypic 3D skin models of psoriasis. Consistently, an aberrant induction of NAMPT and PARP activity, together with AIFM1 nuclear translocation, was observed in lesional skin from psoriasis patients. In conclusion, hyperactivation of PARP1 in response to ROS-induced DNA damage, fueled by NAMPT-derived NAD+, mediates skin inflammation through parthanatos cell death.

A study of chronic skin inflammation reveals that hyperactivation of PARP1 in response to ROS-induced DNA damage, fueled by NAMPT-derived NAD+, mediates skin inflammation via parthanatos cell death, identifying NAMPT, PARP1 and AIFM1 as novel therapeutic targets for psoriasis.

Highlights
  • Nicotinamide phosphoribosyltransferase (NAMPT) inhibition alleviates inflammation in zebrafish and human organotypic 3D skin models of psoriasis.
  • NADPH oxidase–derived reactive oxygen species (ROS) mediate keratinocyte DNA damage and poly(ADP-ribose) polymerase 1 (PARP1) overactivation.
  • Inhibition of parthanatos cell death phenocopies the effects of NAMPT inhibition in zebrafish and human psoriasis models.
  • NAMPT and poly(ADP-ribose) (PAR) metabolism is altered in psoriasis patients.
  相似文献   

19.
Cynthia Ho 《FEBS letters》2009,583(18):3081-170
Sir2 mediates lifespan extension in lower eukaryotes but whether its mammalian homolog, sirtuin 1, silent mating type information regulation 2 homolog (SIRT1), is a longevity protein is controversial. We stably introduced the SIRT1 gene into human vascular smooth muscle cells (SMCs) and observed minimal extension of replicative lifespan. However, SIRT1 activity was found to be exquisitely dependent on nicotinamide phosphoribosyltransferase (Nampt) activity. Moreover, overexpression of Nampt converted SIRT1-overexpressing SMCs to senescence-resistant cells together with heightened SIRT1 activity, suppressed p21, and strikingly lengthened replicative lifespan. Thus, SIRT1 can markedly postpone SMC senescence, but this requires overcoming an otherwise vulnerable nicotinamide adenine dinucleotide salvage reaction in aging SMCs.  相似文献   

20.
Calorie restriction (CR) extends lifespans in a wide variety of species. CR induces an increase in the NAD+/NADH ratio in cells and results in activation of SIRT1, an NAD+-dependent protein deacetylase that is thought to be a metabolic master switch linked to the modulation of lifespans. CR also affects the expression of peroxisome proliferator-activated receptors (PPARs). The three subtypes, PPARα, PPARγ, and PPARβ/δ, are expressed in multiple organs. They regulate different physiological functions such as energy metabolism, insulin action and inflammation, and apparently act as important regulators of longevity and aging. SIRT1 has been reported to repress the PPARγ by docking with its co-factors and to promote fat mobilization. However, the correlation between SIRT1 and other PPARs is not fully understood. CR initially induces a fasting-like response. In this study, we investigated how SIRT1 and PPARα correlate in the fasting-induced anti-aging pathways. A 24-h fasting in mice increased mRNA and protein expression of both SIRT1 and PPARα in the livers, where the NAD+ levels increased with increasing nicotinamide phosphoribosyltransferase (NAMPT) activity in the NAD+ salvage pathway. Treatment of Hepa1-6 cells in a low glucose medium conditions with NAD+ or NADH showed that the mRNA expression of both SIRT1 and PPARα can be enhanced by addition of NAD+, and decreased by increasing NADH levels. The cell experiments using SIRT1 antagonists and a PPARα agonist suggested that PPARα is a key molecule located upstream from SIRT1, and has a role in regulating SIRT1 gene expression in fasting-induced anti-aging pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号