共查询到20条相似文献,搜索用时 0 毫秒
1.
Bovine spongiform encephalopathy (BSE) created a global European crisis in the 1980s and 90s, with very serious health and economic implications. Classical BSE now appears to be under control, to a great extent as a result of a global research effort that identified the sources of prions in meat and bone meal (MBM) and developed new animal-testing tools that guided policy. Priority ( www.prionpriority.eu) was a European Union (EU) Framework Program 7 (FP7)-funded project through which 21 European research institutions and small and medium enterprises (SMEs) joined efforts between 2009 and 2014, to conduct coordinated basic and applied research on prions and prion diseases. At the end of the project, the Priority consortium drafted a position paper ( www.prionpriority.eu/Priority position paper) with its main conclusions. In the present opinion paper, we summarize these conclusions. With respect to the issue of re-introducing ruminant protein into the feed-chain, our opinion is that sustaining an absolute ban on feeding ruminant protein to ruminants is essential. In particular, the spread and impact of non-classical forms of scrapie and BSE in ruminants is not fully understood and the risks cannot be estimated. Atypical prion agents will probably continue to represent the dominant form of prion diseases in the near future in Europe. Atypical L-type BSE has clear zoonotic potential, as demonstrated in experimental models. Similarly, there are now data indicating that the atypical scrapie agent can cross various species barriers. More epidemiological data from large cohorts are necessary to reach any conclusion on the impact of its transmissibility on public health. Re-evaluations of safety precautions may become necessary depending on the outcome of these studies. Intensified searching for molecular determinants of the species barrier is recommended, since this barrier is key for important policy areas and risk assessment. Understanding the structural basis for strains and the basis for adaptation of a strain to a new host will require continued fundamental research, also needed to understand mechanisms of prion transmission, replication and how they cause nervous system dysfunction and death. Early detection of prion infection, ideally at a preclinical stage, also remains crucial for development of effective treatment strategies. 相似文献
2.
The prion protein is a copper (Cu)-binding protein. The abnormal isoform of this protein is associated with the transmissible spongiform encephalopathies or prion diseases. In prion diseases, the prion protein loses its Cu binding capacity. The effect of prion protein expression on the Cu content of the brain was investigated. Transgenic mice, either overexpressing the prion protein or expressing a mutant form lacking the Cu-binding region of the protein, were compared with wild-type mice and mice in which expression of the protein was knocked out. Age-dependent differences in Cu content of the brain were detected. Also, synaptosomal fractions from the brains of the mice showed different Cu content depending on the expression of the prion protein. Mice expressing prion protein, but without the Cu-binding domain showed reduced Cu content. Mice overexpressing the prion protein showed little difference in Cu in the brain compared with wild type but also the prion protein expressed by the mice showed a reduction in the level of Cu bound. These results confirm that prion protein expression modulates the Cu level found at the synapse and this effect is dependent on its Cu binding capacity. Loss of normal Cu binding by the prion protein altered age-related increases in metals in the brain. This may explain why many forms of human prion disease do not develop until late in life. 相似文献
3.
The transmissible spongiform encephalopathies (TSE), or prion diseases, are a group of rare, fatal, and transmissible neurodegenerative
diseases of mammals for which there are no known viral or bacterial etiological agents. The bovine form of these diseases,
bovine spongiform encephalopathy (BSE), has crossed over into humans to cause variant Creutzfeldt-Jakob disease. As a result,
BSE and the TSE diseases are now considered a significant threat to human health. Understanding the basic mechanisms of TSE
pathogenesis is essential for the development of effective TSE diagnostic tests and anti-TSE therapeutic regimens. This review
provides an overview of the molecular mechanisms that underlie this enigmatic group of diseases. 相似文献
5.
Prion diseases are neurodegenerative diseases that can be transmitted between individuals. The exact cause of these diseases remains unknown. However, one of the key events associates with the disease is the aggregation of a cellular protein, the prion protein. The mechanism of this is still unclear. However, it is likely that the aggregation is trigged by a seeding mechanism in which an oligomer of the prion protein is able to catalyse polymerisation of further prion protein into larger aggregates. We have developed a model of this process using an oligomeric species generated from recombinant protein by exposure to manganese. On fractionation of the seeding species, we estimated that the smallest size the oligomer would be is an octomer. We analysed the catalytic mechanism of the seeding oligomer and its interaction with substrate. Different domains of the protein are necessary for the seeding ability of the prion protein as opposed to those required for it to form a substrate for the polymerisation reaction. Prion seeds formed from different sheep alleles are able to reproduce the characteristics of scrapie in terms of resistance to disease. However, we were also able to generate prion seed from chicken PrP a species where no prion disease is known. Our findings provide an insight into the aggregation process of the prion protein and its potential relation to disease progress. 相似文献
6.
Cnidarians have long been recognized as occupying a unique position in nervous system evolution and, consequently, have attracted considerable attention from neurobiologists over the years. During the latter half of the 20th century, the application of a variety of electrophysiological and other methods provided us with a great deal of information about the scope and composition of the cnidarian nervous system. Here, I will briefly review what is known about cnidarian nervous systems, what remains to be found and, most importantly, discuss the status and future of the field. 相似文献
7.
The mouse-adapted scrapie prion strain RML is one of the most widely used in prion research. The introduction of a cell culture-based assay of RML prions, the scrapie cell assay (SCA) allows more rapid and precise prion titration. A semi-automated version of this assay (ASCA) was applied to explore a range of conditions that might influence the infectivity and properties of RML prions. These include resistance to freeze-thaw procedures; stability to endogenous proteases in brain homogenate despite prolonged exposure to varying temperatures; distribution of infective material between pellet and supernatant after centrifugation, the effect of reducing agents and the influence of detergent additives on the efficiency of infection. Apparent infectivity is increased significantly by interaction with cationic detergents. Importantly, we have also elucidated the relationship between the duration of exposure of cells to RML prions and the transmission of infection. We established that the infection process following contact of cells with RML prions is rapid and followed an exponential time course, implying a single rate-limiting process. 相似文献
8.
Summary Synaptic terminals of fast (FCE) and slow (SCE) excitatory neurons were physiologically identified on separate fibres of one muscle, the closer muscle in lobster claws. The innervation by these identified fibers was demonstrated over long distances (7–21 m) by examining serial thin sections at periodic intervals. The ultrastructure of each type of innervation was consistent both qualitatively and quantitatively in two separate samples. The FCE innervation is relatively simple in having consistently small-diameter terminals each forming a single long synapse, with few synaptic vesicles, and little if any postsynaptic apparatus. The SCE innervation is more complex in having larger-diameter but more variable terminals forming several short synapses, with many synaptic vesicles and an extensive postsynaptic apparatus. These differences in the size of the synapses and the number of synaptic vesicles parallel differences in transmitter release and fatigue sensitivity characteristic of the two types of innervation. The degree of elaboration of the postsynaptic apparatus may reflect differences in the amount of transmitter taken up after release. Our data reveal for the first time in a single muscle differences between FCE and SCE innervation previously reported in different muscles and in different species.Supported by grants from NIH (NINCDS) to A.G. Humes and the late Fred Lang and from NSERC and Muscular Dystrophy Assoc. of Canada to C.K. GovindWe thank Lena Hill for her technical expertise and critical evaluation of the study, and Dr. A.G. Humes for providing research facilities 相似文献
9.
Wild-type alpha-synuclein, a protein of unknown function, has received much attention because of its involvement in a series of diseases that are known as synucleinopathies. We find that long-lasting potentiation of synaptic transmission between cultured hippocampal neurons is accompanied by an increase in the number of alpha-synuclein clusters. Conversely, suppression of alpha-synuclein expression through antisense nucleotide and knockout techniques blocks the potentiation, as well as the glutamate-induced increase in presynaptic functional bouton number. Consistent with these findings, alpha-synuclein introduction into the presynaptic neuron of a pair of monosynaptically connected cells causes a rapid and long-lasting enhancement of synaptic transmission, and rescues the block of potentiation in alpha-synuclein null mouse cultures. Also, we report that the application of nitric oxide (NO) increases the number of alpha-synuclein clusters, and inhibitors of NO-synthase block this increase, supporting the hypothesis that NO is involved in the enhancement of the number of alpha-synuclein clusters. Thus, alpha-synuclein is involved in synaptic plasticity by augmenting transmitter release from the presynaptic terminal. 相似文献
10.
Human CJD, endemic sheep scrapie, epidemic bovine spongiform encephalopathy (BSE), and other transmissible spongiform encephalopathies (TSEs), are caused by a group of related but molecularly uncharacterized infectious agents. The UK‐BSE agent infected many species, including humans where it causes variant CJD (vCJD). As in most viral infections, different TSE disease phenotypes are determined by both the agent strain and the host species. TSE strains are most reliably classified by incubation time and regional neuropathology in mice expressing wild‐type (wt) prion protein (PrP). We compared vCJD to other human and animal derived TSE strains in both mice and neuronal cultures expressing wt murine PrP. Primary and serial passages of the human vCJD agent, as well as the highly selected mutant 263K sheep scrapie agent, revealed profound strain‐specific characteristics were encoded by the agent, not by host PrP. Prion theory posits that PrP converts itself into the infectious agent, and thus short incubations require identical PrP sequences in the donor and recipient host. However, wt PrP mice injected with human vCJD brain homogenates showed dramatically shorter primary incubation times than mice expressing only human PrP, a finding not in accord with a PrP species barrier. All mouse passage brains showed the vCJD agent derived from a stable BSE strain. Additionally, both vCJD brain and monotypic neuronal cultures produced a diagnostic 19 kDa PrP fragment previously observed only in BSE and vCJD primate brains. Monotypic cultures can be used to identify the intrinsic, strain‐determining molecules of TSE infectious particles. J. Cell. Biochem. 106: 220–231, 2009. © 2008 Wiley‐Liss, Inc. 相似文献
11.
Telocytes (TCs) were previously shown by our group to form a tandem with stem/progenitor cells in cardiac stem cell (CSC) niches, fulfilling various roles in cardiac renewal. Among these, the ability to ‘nurse’ CSCs in situ, both through direct physical contact (junctions) as well as at a distance, by paracrine signalling or through extracellular vesicles containing mRNA. We employed electron microscopy to identify junctions (such as gap or adherens junctions) in a co‐culture of cardiac TCs and CSCs. Gap junctions were observed between TCs, which formed networks, however, not between TCs and CSCs. Instead, we show that TCs and CSCs interact in culture forming heterocellular adherens junctions, as well as non‐classical junctions such as puncta adherentia and stromal synapses. The stromal synapse formed between TCs and CSCs (both stromal cells) was frequently associated with the presence of electron‐dense nanostructures (on average about 15 nm in length) connecting the two opposing membranes. The average width of the synaptic cleft was 30 nm, whereas the average length of the intercellular contact was 5 μm. Recent studies have shown that stem cells fail to adequately engraft and survive in the hostile environment of the injured myocardium, possibly as a result of the absence of the pro‐regenerative components of the secretome (paracrine factors) and/or of neighbouring support cells. Herein, we emphasize the similarities between the junctions described in co‐culture and the junctions identified between TCs and CSCs in situ. Reproducing a CSC niche in culture may represent a viable alternative to mono‐cellular therapies. 相似文献
12.
Necdin is expressed predominantly in terminally differentiated neurons, and its ectopic expression suppresses cell proliferation. We screened a cDNA library from neurally differentiated embryonal carcinoma P19 cells for necdin-binding proteins by the yeast two-hybrid assay. One of the positive clones contained cDNA encoding a carboxyl-terminal portion of heterogeneous nuclear ribonucleoprotein U (hnRNP U), a nuclear matrix-associated protein that interacts with chromosomal DNA. We isolated cDNA encoding full-length mouse hnRNP U to analyze its physical and functional interactions with necdin. The necdin-binding site of hnRNP U was located near a carboxyl-terminal region that mediated the association between hnRNP U and the nuclear matrix. In postmitotic neurons, endogenously expressed necdin and hnRNP U were detected in the nuclear matrix and formed a stable complex. Ectopically expressed necdin was concentrated in the nucleoli, but coexpressed hnRNP U recruited necdin to the nucleoplasmic compartment of the nuclear matrix. Furthermore, under the same conditions necdin and hnRNP U cooperatively suppressed the colony formation of transfected SAOS-2 cells. These results suggest that necdin suppresses cell proliferation through its interaction with hnRNP U in the specific subnuclear structure. 相似文献
13.
Continuous noninvasive monitoring of peri‐cellular liquid phase pO 2 in adherent cultures is described. For neurons and astrocytes, this approach demonstrates that there is a significant difference between predicted and observed liquid phase pO 2. Particularly at low gas phase pO 2s, cell metabolism shifts liquid phase pO 2 significantly lower than would be predicted from the O 2 gas/air equilibrium coefficient, indicating that the cellular oxygen uptake rate exceeds the oxygen diffusion rate. The results demonstrate the need for direct pO 2 measurements at the peri‐cellular level, and question the widely adopted current practice of relying on setting the incubator gas phase level as means of controlling pericellular oxygen tension, particularly in static culture systems that are oxygen mass transfer limited. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011 相似文献
14.
Identified leech neurons in culture are providing novel insights to the signals underlying synapse formation and function. Identified neurons from the central nervous system of the leech can be removed individually and plated in culture, where they retain their characteristic physiological properties, grow neurites, and form specific synapses that are directly accessible by a variety of approaches. Synapses between cultured neurons can be chemical or electrical (either rectifying or not) or may not form, depending on the neuronal identities. Furthermore, the characteristics of these synapses depend on the regions of the cells that come into contact. The formation and physiology of synapses between the Retzius cell and its partners have been well characterized. Retzius cells form purely chemical, inhibitory synapses with pressuresensitive (P) cells where serotonin (5-HT) is the transmitter. Retzius cells synthesize 5-HT, which is stored in vesicles that recycle after 5-HT is secreted on stimulation. The release of 5-HT is quantal, calcium-dependent, and shows activity-dependent facilitation and depression. Anterograde and retrograde signals during synapse formation modify calcium currents, responses to 5-HT, and neurite outgrowth. The nature of these synaptogenic signals is being elucidated. For example, contact specifically with Retzius cells induces a localized selection of transmitter responses in postsynaptic P cells. This effect is signaled by tyrosine phosphorylation prior to synapse formation. © 1995 John Wiley & Sons, Inc. 相似文献
15.
Gap junctions (GJ) are formed by a number of homologous proteins termed connexins. Here expression of connexins Cx26, Cx32 and Cx43, was evaluated by immunofluorescence (IF) in mammary glands from virgin, pregnant and lactating rats. Cx26, Cx32 and Cx43 labeling was detected in epithelial parenchymal cells at all functional stages. Cx26 and Cx32 labeling was very low in glands from virgin animals, somewhat greater in glands from pregnant animals and significantly higher (in number and size) in lactating animals. In the last ones, Cx26 and Cx32 punctate labeling was localized to the basal and lateral membranes of alveolar epithelial cells and collecting ductules. Cx43 punctate labeling was restricted to the periphery of alveoli towards the basal pole of epithelial cells at all functional stages, and it enlarged slightly during lactation. At this localization, Cx43 may form GJ between myoepithelial cells and/or between epithelial and myoepithelial cells. Cx43 was also found to be steadily expressed in the connective tissue which surrounds and invades each parenchymal lobe, at all functional stages. At this localization, Cx43 may couple fibroblasts and/or adipose cells. IF studies in sections from lactating mice showed the same distribution of connexins. Immunoblots confirmed specificity of labeling and the presence of Cx32 and Cx43 in the mammary gland. The increase in connexin expression detected during pregnancy and lactation may be important for epithelial cell differentiation and secretion in the mammary gland. 相似文献
16.
Only a decade after Van Wezel introduced the first product made in microcarrier cultures on industrial scale at economically acceptable costs, namely Inactivated Polio Vaccine (IPV), interest was taken in this revolutionary type of cell growth system. The basic idea was to develop a culture system with equal potentials for control of environmental culture conditions and scaling up as the systems used in industrial microbiology. Although initially only positively-charged beads were used it soon became clear that negatively-charged or amphoteric materials such as proteins or amino acids polymerized to the surface were equally useful. Eventually numerous different types of microcarrier were developed. The second generation of microcarriers consisted of macroporous beads providing increased surface area for cell attachment and growth by external and interior space. Such microcarriers offer great potential for high cell densities and enhanced productivity for certain production systems, especially recombinant CHO-cells. These carriers, which not only provide possibilities for anchorage-dependent cells but also for cells growing suspension, can be used in homogeneous bioreactors as well as in fluidized or fixed-bed systems. Despite considerable in vestments and research on the development and improvement of microcarriers one question is still open: is microcarrier technology still in its infancy or is it full-grown and is the basic idea relized? In this paper a general overview will be given of the present state of microcarrier technology and also of its perspectives. 相似文献
17.
The P19 embryonal carcinoma cell line represents a pluripotential stem cell that can differentiate along the neural or muscle cell lineage when exposed to different environments. Exposure to retinoic acid induces P19 cells to differentiate into neurons and astrocytes that express similar developmental markers as their embryonic counterparts. We examined the expression of gap junction genes during differentiation of these stem cells into neurons and astrocytes. Untreated P19 cells express at least two gap junction proteins, connexins 26 and 43. Connexin32 could not be detected in these cells. Treatment for 96 hr with 0.3 mM retinoic acid induced the P19 cells to differentiate first into neurons followed by astrocytes. Retinoic acid produced a decrease in connexin43 mRNA, protein, and functional gap junctions. Connexin26 message was not affected by retinoic acid treatment. The neurons that developed consisted of small round cell bodies extending two to three neurites and expressed MAP2. Connexin26 was detected at sites of cell–cell and cell–neurite contact within 3 days following differentiation with retinoic acid. The astrocytes were examined for production of their intermediate filament marker, glial fibrillary acidic protein (GFAP). GFAP was first detected at 8 days by Western blotting. In culture, astrocytes co-expressed GFAP and connexin43 similar to primary cultures of mouse brain astrocytes. These results suggest that differentiation of neurons and glial cells involves specific connexin expression in each cell type. The P19 cell line will provide a valuable model with which to examine the role gap junctions play during differentiation events of developing neurons and astrocytes. Dev. Genet. 21:187–200, 1997. © 1997 Wiley-Liss, Inc. 相似文献
18.
Summary Myogenic cells of the L 6 line proliferate and fuse in culture to form myotubes that actively synthesize muscle-specific proteins such as myosin. We show that the expression of the differentiated phenotype can be influenced by the electrical charges of the substratum on which the cells were grown. Negatively charged surfaces did not influence the developmental program of the cells although positively charged ones interfered with myogenesis. The interaction operates primarily by interfering with the mitotic cycle, which is slowed down, with fusion which is blocked, and with myosin synthesis, which is reduced. Our results show that growth of the cells on positively charged surfaces prevents the switching of a large fraction of the population from a proliferative state to a differentiating program. We postulate that this interference might operate through the slowdown in DNA replication. The cell culture method described represents a good model for studying the different steps involved in the differentiation of L 6 cells. This work was supported by the American Muscular Dystrophy Association. 相似文献
19.
The neuromuscular junction (NMJ) displays considerable morphological plasticity as a result of differences in activity level, as well as aging. This is true of both presynaptic and postsynaptic components of the NMJ. Yet, despite these variations in NMJ structure, proper presynaptic to postsynaptic coupling must be maintained in order for effective cell‐to‐cell communication to occur. Here, we examined the NMJs of muscles with different activity profiles (soleus and EDL), on both slow‐ and fast‐twitch fibers in those muscles, and among young adult and aged animals. We used immunofluorescent techniques to stain nerve terminal branching, presynaptic vesicles, postsynaptic receptors, as well as fast/slow myosin heavy chain. Confocal microscopy was used to capture images of NMJs for later quantitative analysis. Data were subjected to a two‐way ANOVA (main effects for myofiber type and age), and in the event of a significant ( p < 0.05) F ratio, a post hoc analysis was performed to identify pairwise differences. Results showed that the NMJs of different myofiber types routinely displayed differences in presynaptic and postsynaptic morphology (although the effect on NMJ size was reversed in the soleus and the EDL), but presynaptic to postsynaptic relationships were tightly maintained. Moreover, the ratio of presynaptic vesicles relative to nerve terminal branch length also was similar despite differences in muscles, their fiber type, and age. Thus, in the face of considerable overall structural differences of the NMJ, presynaptic to postsynaptic coupling remains constant, as does the relationship between presynaptic vesicles and the nerve terminal branches that support them. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 744–753, 2013 相似文献
20.
To incorporate variation of neuron shape in neural models, we developed a method of generating a population of realistically shaped neurons. Parameters that characterize a neuron include soma diameters, distances to branch points, fiber diameters, and overall dendritic tree shape and size. Experimentally measured distributions provide a means of treating these morphological parameters as stochastic variables in an algorithm for production of neurons. Stochastically generated neurons shapes were used in a model of hippocampal dentate gyrus granule cells. A large part of the variation of whole neuron input resistance RN is due to variation in shape. Membrane resistivity Rm computed from RN varies accordingly. Statistics of responses to synaptic activation were computed for different dendritic shapes. Magnitude of response variation depended on synapse location, measurement site, and attribute of response. 相似文献
|