首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies demonstrated that mitochondrial fission arguments the stemness of bone marrow-derived mesenchymal stem cells (BMSCs). Because mitophagy is critical in removing damaged or surplus mitochondrial fragments and maintaining mitochondrial integrity, the present study was undertaken to test the hypothesis that mitophagy is involved in mitochondrial fission-enhanced stemness of BMSCs. Primary cultures of rat BMSCs were treated with tyrphostin A9 (TA9, a potent inducer of mitochondrial fission) to increase mitochondrial fission, which was accompanied by enhanced mitophagy as defined by increased co-staining of MitoTracker Green for mitochondria and LysoTracker Deep Red for lysosomes, as well as the increased co-localization of autophagy markers (LC3B, P62) and mitochondrial marker (Tom20). A mitochondrial uncoupler, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) was used to promote mitophagy, which was confirmed by an increased co-localization of mitochondrial and lysosome biomarkers. The argumentation of mitophagy was associated with enhanced stemness of BMSCs as defined by increased expression of stemness markers Oct4 and Sox2, and enhanced induction of BMSCs to adipocytes or osteocytes. Conversely, transfection of BMSCs with siRNA targeting mitophagy-essential genes Pink1/Prkn led to diminished stemness of the stem cells, as defined by depressed stemness markers. Importantly, concomitant promotion of mitochondrial fission and inhibition of mitophagy suppressed the stemness of BMSCs. These results thus demonstrate that mitophagy is critically involved in mitochondrial fission promotion of the stemness of BMSCs.  相似文献   

2.
《Cell reports》2023,42(2):112105
  1. Download : Download high-res image (93KB)
  2. Download : Download full-size image
  相似文献   

3.

Background

Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC) strain (hMSC-TERT20) immortalized by retroviral vector mediated human telomerase (hTERT) gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization.

Methodology/Principal Findings

Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts.

Conclusions

Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1 expression was required to bring about matrix-endothelial interactions and for xenografted hMSC -BD11 cells to optimally recruit host vasculature.  相似文献   

4.
5.
6.
We investigated the role of profilin 2 in the stemness, migration, and invasion of HT29 cancer stem cells (CSCs). Increased and decreased levels of profilin 2 significantly enhanced and suppressed the self-renewal, migration, and invasion ability of HT29 CSCs, respectively. Moreover, profilin 2 directly regulated the expression of stemness markers (CD133, SOX2, and β-catenin) and epithelial mesenchymal transition (EMT) markers (E-cadherin and snail). CD133 and β-catenin were up-regulated by overexpression of profilin 2 and down-regulated by depletion of profilin 2. SOX2 was decreased by profilin 2 depletion. E-cadherin was not influenced by profilin 2- overexpression but increased by profilin 2- knockdown. The expression of snail was suppressed by profilin 2- knockdown. We speculated that stemness and the EMT are closely linked through profilin 2-related pathways. Therefore, this study indicates that profilin 2 affects the metastatic potential and stemness of colorectal CSCs by regulating EMT- and stemness-related proteins.  相似文献   

7.
Recently human adipose-derived stem cells (ASCs) have shown much therapeutic potential in regenerative medicine. However, fetal bovine serum (FBS) used in culturing human cells may give risk to viral and prion transmission as well as immune rejection. Human serum (HS) is a safer growth supplement in human cell culture but its effects have not been well established. Therefore the objectives of this study were to compare the effects of HS versus FBS on the proliferation and stemness gene expression of ASCs. ASCs were cultured for 5 passages in medium supplemented with either 10% HS or 10% FBS. ASCs proliferation rate and viability were determined at every passage. Total RNA was extracted at passage 5 (P5) and quantitative PCR was carried out to determine the stemness gene expression level of SOX-2, Nanog3, BST-1, REX-1, ABCG2 and FGF-4. The results showed ASC cultured in 10% HS scored greater proliferation rates and viability compared to 10% FBS. ASCs proliferated significantly faster in 10% HS compared to 10% FBS at P2, P3, and P4 (p < 0.05). In quantitative gene expression analysis, ASCs cultured in 10% FBS showed a significant increase of BST-1, REX-1 and ABCG2 expression compared to 10% HS. In conclusion, HS promotes ASCs proliferation and viability but its ability to support the stemness property of ASCs was inferior to FBS.  相似文献   

8.
9.
Trosko JE  Chang CC  Upham BL  Tai MH 《Mutation research》2005,591(1-2):187-197
Since carcinogenesis is a multi-stage, multi-mechanism process, involving mutagenic, cell death and epigenetic mechanisms, during the "initiation/promotion/and progression" phases, chemoprevention must be based on understanding the underlying mechanism(s) of each phase, In principle, prevention of each of these phases could reduce the risk to cancer. However, because reducing the mutagenic/initiation phase to a zero level is impossible, the most efficacious intervention would be at the promotion phase that requires a sustained exposure to promoting conditions/agents. In addition, assuming the "target" cells for carcinogenesis are the pluri-potent stem cells and their early progenitor or transit cells, chemoprevention strategies for inhibiting the promotion of these two types of pre-malignant "initiated" cells will require different kinds of agents. A hypothesis will be proposed that involves adult stem cells, which express Oct-4 gene and lack gap junctional intercellular communication (GJIC-) or the early progenitor cells which express GJIC+ and are partially-differentiated, if initiated, will be promoted by agents that either inhibit secreted negative growth regulators or by inhibitors of GJIC. Consequently, anti-tumor promoting chemopreventing agents to each of these two types of initiated cells must have different mechanisms of action and work on different target cells. Assuming stem cells are target cells for carcinogenesis, an alternative method of chemoprevention would be to reduce the stem cell pool. Many classes of anti-tumor promoter chemopreventive agents, such as green tea components, resveratrol, caffeic acid phenethylene ester, either up-regulate GJIC in stem cells or prevent the down regulation of GJIC by tumor promoters in early progenitor cells.  相似文献   

10.
11.
12.
It has been hypothesized that adult hematopoietic stem cells (HSCs) need to remain quiescent to retain their long-term self-renewal activity and multipotency. However, it is still unclear how lack of quiescence is detrimental to HSC. We identified that the mTOR pathway is the key to HSCs quiescence. mTOR overactivation caused increased mitochondrial biogenesis and accumulation of much higher level of reactive oxygen species (ROS). Removal of ROS rescued HSC defects associated with hyperactivated mTOR. We propose susceptibility to ROS as the underlying cause for HSC’s general requirement for quiescence.  相似文献   

13.
The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characterized by hypoxic condition, we investigated if the low oxygen tension may improve the proliferation and stemness of ADMSCs. Intact adipose tissue was resected from eight subjects, and the stromal vascular fraction was obtained by using type II collagenase. The heterogeneity of cellular lineages was confirmed by immunophenotypic analysis that showed the presence of leukocytes (CD45+), endothelial cells (CD34+), and pericytes (CD140+). The immunophenotype of confluent ADMSCs was similar to that of bone marrow-derived MSCs, except for the expression of CD34, which was variable (donor-dependent) and inversely correlated to the CD36 expression. ADMSCs showed a high clonal efficiency (94.5 ± 1 %) and were able to generate osteoblastic, chondrocytic and adipocytic lineages. ADMSCs were cultured under normoxic (21 % O2) and hypoxic (1 % O2) conditions, and we found that hypoxia significantly favoured ADMSC proliferation and preserved the expression of stemness genes, i.e. Nanog and Sox2. Since hypoxia reflects the microenvironment in which ADMSCs must proliferate and differentiate, the culture in hypoxic condition allows to better understand the biology of these cells and their regenerative potential. Low oxygen concentrations promote cell proliferation and stemness, thus enriching the pool of cells potentially able to differentiate into multi-lineages, and extending the possibility of a long-term expansion.  相似文献   

14.
Osteoblasts and adipocytes are derived from a common precursor in bone marrow, the mesenchymal stem cell (MSC). Factors driving human MSCs (hMSCs) to differentiate down the two lineages play important roles in determining bone density because it has been shown that bone volume loss associated with osteoporosis and aging is accompanied by reduced osteoblastic bone formation and increased marrow adipose tissue. The genes upregulated in hMSCs during osteogenic differentiation were screened using cDNA microarrays and were semi-quantitated by real-time RT-PCR. One of the genes identified was sortilin, which was upregulated one day after osteogenic induction and remained upregulated for a week. The overexpression of sortilin in hMSCs using an adenovirus vector resulted in the acceleration of mineralization during osteogenic differentiation without affecting alkaline phosphatase activity. Lipoprotein lipase (LPL), produced by adipocytes, is bound by sortilin, which may mediate its endocytosis. By adding LPL to osteogenic induction medium, osteoblastic mineralization was inhibited in a dose-dependent manner. Interestingly, sortilin overexpression abolished the LPL-mediated suppression of osteogenic differentiation. hMSCs exist in marrow where LPL-producing adipose cells are abundant and where osteogenesis is negatively regulated by LPL. Sortilin has a counter effect of promoting osteogenesis by acting as a scavenger of LPL.  相似文献   

15.
16.
The regenerative inadequacy of the injured myocardium leads to adverse remodeling, cardiac dysfunction, and heart disease. Stem cell-replacement of damaged myocardium faces major challenges such as inappropriate differentiation, cellular uncoupling, scar formation, and accelerated apoptosis of transplanted cells. These challenges can be met by engineering an in vitro system for delivering stem cells capable of cardiac differentiation, tissue integration, and resistance to oxidative stress. In this study, we describe the formation of three-dimensional (3D) cell aggregates ("cardiospheres") by putative stem cells isolated from adult dog myocardium using poly-L-ornithine. De novo formation of cardiospheres in growth factor-containing medium occurred over a period of 2-3 weeks, but accelerated to 2-3 days when seeded on poly-L-ornithine. Older cardiospheres developed foci of "beating" cells upon co-culture with rat neonatal cardiomyocytes. Cardiospheres contained cells that exhibited characteristics of undifferentiated cells; differentiating cardiomyocytes with organized contractile machinery; and vascular cells capable of forming "vessel-like" networks. They exhibited strong resistance to elevated concentrations of hydrogen peroxide in culture and survived subcutaneous injections without undergoing neoplastic transformation up to 3 weeks post-transplantation. These findings suggest that cardiospheres are potentially useful for delivering functional stem cells to the damaged heart.  相似文献   

17.
Multipotential adult mesenchymal stem cells (MSCs) are able to differentiate along several known lineages, and lineage commitment is tightly regulated through specific cellular mediators and interactions. Recent observations of a low/high bone-mass phenotype in patients expressing a loss-/gain-of-function mutation in LRP5, a coreceptor of the Wnt family of signaling molecules, suggest the importance of Wnt signaling in bone formation, possibly involving MSCs. To analyze the role of Wnt signaling in mesenchymal osteogenesis, we have profiled the expression of WNTs and their receptors, FRIZZLEDs (FZDs), and several secreted Wnt inhibitors, such as SFRPs, and examined the effect of Wnt 3a, as a representative canonical Wnt member, during MSC osteogenesis in vitro. WNT11, FZD6, SFRP2, and SFRP3 are upregulated during MSC osteogenesis, while WNT9A and FZD7 are downregulated. MSCs also respond to exogenous Wnt 3a, based on increased beta-catenin nuclearization and activation of a Wnt-responsive promoter, and the magnitude of this response depends on the MSC differentiation state. Wnt 3a exposure inhibits MSC osteogenic differentiation, with decreased matrix mineralization and reduced alkaline phosphatase mRNA and activity. Wnt 3a treatment of fully osteogenically differentiated MSCs also suppresses osteoblastic marker gene expression. The Wnt 3a effect is accompanied by increased cell number, resulting from both increased proliferation and decreased apoptosis, particularly during expansion of undifferentiated MSCs. The osteo-suppressive effects of Wnt 3a are fully reversible, i.e., treatment prior to osteogenic induction does not compromise subsequent MSC osteogenesis. The results also showed that sFRP3 treatment attenuates some of the observed Wnt 3a effects on MSCs, and that inhibition of canonical Wnt signaling using a dominant negative TCF1 enhances MSC osteogenesis. Interestingly, expression of Wnt 5a, a non-canonical Wnt member, appeared to promote osteogenesis. Taken together, these findings suggest that canonical Wnt signaling functions in maintaining an undifferentiated, proliferating progenitor MSC population, whereas non-canonical Wnts facilitate osteogenic differentiation. Release from canonical Wnt regulation is a prerequisite for MSC differentiation. Thus, loss-/gain-of-function mutations of LRP5 would perturb Wnt signaling and depress/promote bone formation by affecting the progenitor cell pool. Elucidating Wnt regulation of MSC differentiation is important for their potential application in tissue regeneration.  相似文献   

18.
This study reports an effect of taurine (1-10 mM) increasing markedly (120%) the number of neural precursor cells (NPCs) from adult mouse subventricular zone, cultured as neurospheres. This effect is one of the highest reported for adult neural precursor cells. Taurine-containing cultures showed 73-120% more cells than controls, after 24 and 96 h in culture, respectively. Taurine effect is due to enhanced proliferation as assessed by BrdU incorporation assays. In taurine cultures BrdU incorporation was markedly higher than controls from 1.5 to 48 h, with the maximal difference found at 1.5 h. This effect of taurine reproduced at every passage with the same window time. Taurine effects are not mimicked by glycine, alanine or GABA. Clonal efficiency values of 3.6% for taurine cultures and 1.3% for control cultures suggest a taurine influence on both, progenitor and stem cells. Upon differentiation, the proportion of neurons in control and taurine cultures was 3.1% (±0.5) and 10.2% (±0.8), respectively. These results are relevant for taurine implication in brain development as well as in adult neurogenesis. Possible mechanisms underlying taurine effects on cell proliferation are discussed.  相似文献   

19.
20.
Glioma contains abundant hypoxic regions which provide niches to promote the maintenance and expansion of glioma stem cells (GSCs), which are resistant to conventional therapies and responsible for recurrence. Given the fact that miR-210 plays a vital role in cellular adaption to hypoxia and in stem cell survival and stemness maintenance, strategies correcting the aberrantly expressed miR-210 might open up a new therapeutic avenue to hypoxia GSCs. In the present study, to explore the possibility of miR-210 as an effective therapeutic target to hypoxic GSCs, we employed a lentiviral-mediated anti-sense miR-210 gene transfer technique to knockdown miR-210 expression and analyze phenotypic changes in hypoxic U87s and SHG44s cells. We found that hypoxia led to an increased HIF-2α mRNA expression and miR-210 expression in GSCs. Knockdown of miR-210 decreased neurosphere formation capacity, stem cell marker expression and cell viability, and induced differentiation and G0/G1 arrest in hypoxic GSCs by partially rescued Myc antagonist (MNT) protein expression. Knockdown of MNT could reverse the gene expression changes and the growth inhibition resulting from knockdown of miR-210 in hypoxic GSCs. Moreover, knockdown of miR-210 led to increased apoptotic rate and Caspase-3/7 activity and decreased invasive capacity, reactive oxygen species (ROS) and lactate production and radioresistance in hypoxic GSCs. These findings suggest that miR-210 might be a potential therapeutic target to eliminate GSCs located in hypoxic niches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号