首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This presentation will introduce laser interference lithography to prepare a periodic line and point micropatterns for study of cell-surface interactions. This process provides a straightforward micropatterning technique based on selective laser ablation of polymers utilizing the periodic energy distribution of two or more beam interference patterns. The micropatterns were characterized by atomic force microscopy, while the surface chemical modification was analyzed using X-ray photoelectron spectroscopy. Human pulmonary fibroblasts cultured on the surface of polycarbonate bearing line micropatterns were elongated, spindlelike, and oriented themselves along the line patterns with all different groove widths. In contrast, cells cultured on point patterns were also bipolar but showed no orientation. Further investigations demonstrated that human pulmonary fibroblast cells cultured on line and point micropatterns showed inflammatory response.  相似文献   

2.
Summary Transmission electron microscopy was used to study the effects of proteolytic enzymes (collagenase, trypsin, clostripain), the calcium chelator ethyleneglycol-bis-(-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA), and the calcium ionophore A 23187 on substrate adhesion and fine structure of chondrocytes and fibroblasts. Monolayer cultured cells responded to treatment with the proteolytic enzymes followed by EGTA or A 23187 by rounding and detaching from the substrate. This was accompanied by the formation of a microvillous surface, deep nuclear folds, and numerous cytoplasmic vacuoles. Labeling experiments with colloidal thorium dioxide indicated that the vacuoles were formed by endocytosis and fusion of endocytic vesicles with preexisting lysosomes. To a variable extent, similar changes were produced by trypsin or EGTA alone. The cells regained their normal fine structure after withdrawal of the reagents and when seeded onto a substrate. In suspension culture, recovery was incomplete; the cells retained a rounded shape and an increased number of cytoplasmic vacuoles.The results suggest that changes in plasma membrane composition and its permeability to calcium represent the primary signal for cell rounding and detachment. The cellular mechanisms responsible for the associated folding of the nuclear envelope and the cell surface remain unidentified. Nevertheless, this is believed to represent a means of handling of excess membrane during sudden transition from a flattened to a rounded shape. Membrane stored in folds and vacuoles is reutilized when the cells reattach and spread out on a substrate.Expert technical assistance was provided by Karin Blomgren and Anne-Marie Motakefi. Financial support was obtained from the Swedish Medical Research Council (06537), the King Gustaf V 80th Birthday Fund and from the Funds of Leiden University  相似文献   

3.
Increasing numbers of cell mechanotransduction studies are currently utilizing elastic substrates fabricated from polyacrylamide in the form of thin gels. Their versatility depends on the ability to ensure the appropriate gel stiffness and control the uniformity and geometry of extracellular matrix protein coating of the gel. Beginning with a brief quantitative emphasis on the elastic properties of polyacrylamide gels, we present an inexpensive and highly reproducible method for uniform coating with a wide variety of extracellular matrix proteins. We used a reducing agent, hydrazine hydrate, to modify nonreactive amide groups in polyacrylamide to highly reactive hydrazide groups that can form covalent bonds with aldehyde or ketone groups in oxidized proteins. This simple conjugation method overcomes the limitations of previously used photoactivatable cross-linkers: nonuniform coating due to nonuniformity of irradiation and technically challenging procedures for micropatterning. As demonstrated in our study of cell polarity during constrained migration, this conjugation method is especially effective in gel micropatterning by manual microcontact printing of protein patterns as small as 5 microm and enables numerous studies of constrained cell attachment and migration that were previously unfeasible due to high cost or difficulty in controlling the protein coating.  相似文献   

4.
The maintenance of the physiological homeostasis of the gut mucosa characterized by continuous proliferation and differentiation processes results from epithelial-mesenchymal cell cross-talk. To set out stable and homogeneous models for the study of the (dys)regulation of various morphofunctional aspects, we established and characterized three clonal cell lines (C9, C11, and C20) derived from human duodenal mucosal connective tissue. We defined the expression of (i) cytoskeletal proteins; (ii) basement membrane molecules (laminins, collagen IV, nidogen) which have been shown formerly to be deposited at the epithelial/mesenchymal interface in situ by the mesenchymal compartment; and (iii) soluble factors, HGF, and TGFbeta1. The three cell lines display common but also specific proliferative responses to cytokines (IL1beta, IL2, IL8, TNFalpha, IFNgamma, TGFbeta1, and HGF). When cocultured with embryonic intestinal endoderms or with human colonic Caco2 or HT29 cancer cells, C9 versus C11 and C20 cell lines induced limited versus extensive growth of the associated epithelial cells. In addition C20 cells allowed spreading of HT29 cells with the formation of a basement membrane at the heterologous interface. Morphogenesis obtained by intracoelomic grafts of associations comprising the mesenchymal cell lines and intestinal endoderms was also different among those composed of C9 cells or of C11 or C20 cells. In conclusion, these data indicate that the mucosal connective tissue is heterogeneous and comprises several phenotypically different mesenchyme-derived cells whose equilibrium may be important in the gut homeostasis. These cells can now be used to define tissue-specific factors which may be involved in the physiopathology of the intestinal epithelium.  相似文献   

5.
We have previously reported that exposing cultured Madin Darby canine kidney (MDCK) cells to the polycation protamine (PRO) results in increased short-circuit current and decreased barrier integrity as measured by mannitol permeability and transepithelial electrical resistance. To further investigate the interaction of PRO with the surface of epithelial cells, we labeled PRO with [14C] with use of reductive alkylation. [14C]PRO bound to the cells in a biphasic pattern. Approximately 10% of the [14C]PRO was bound to the cells in the first 5 min, followed by an additional 10% that was bound over the next 25 min. No additional [14C]PRO bound to the cells after the initial 30 min. Binding of [14C]PRO was inhibited by "cold" PRO, which suggested specificity. Binding was also inhibited by polyanions, serum, and albumin, agents previously found to protect MDCK cells from PRO-induced injury. The binding of PRO to MDCK cells was not inhibited by incubation of the MDCK cells with neuraminidase, to remove surface sialic acid residues, or with heparinase, to remove surface heparan sulfate, even though metabolic labeling experiments demonstrated that neuraminidase decreased cell sialic acid and heparinase decreased cell heparan sulfate. Neuraminidase and heparinase offered no protection from PRO injury and had no effect themselves on mannitol permeability. Incubation of the cells with trypsin, however, blunted both the binding of PRO to the cells and the increase in mannitol permeability after exposure of the cells to PRO.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effect of surface topography on the long-term development (≈10 weeks) of biofilms has been investigated using a monitoring technique based on images produced by a flat-bed scanner and initially developed for flat surfaces. The biofilm response to rotation speed changes in lab-scale rotating biological contactors (RBCs) has been studied. Two RBCs, each containing five discs (two with flat surfaces and three with rough surfaces) were run initially at two different rotation speeds: 4 rpm for reactor I and 40 rpm for reactor II. After 47 days, the rotation speed was increased in reactor I to 40 rpm and decreased in reactor II to 4 rpm. Prior to the rotation speed change, the biofilm on the flat discs underwent large detachments in both reactors, but the biofilm on rough discs was less extensively damaged. The increase in rotation speed induced large detachments of the biofilm in reactor I on all discs, but the biofilm on the rough discs recovered more effectively with faster regrowth. In reactor II, the decrease in rotation speed favored the development of the biofilm. Wall stress distributions obtained from CFD simulations on flat and rough discs at different rotation speeds were well correlated with experimental observations.  相似文献   

7.
8.
Hydroquinone, a potent toxic agent of cigarette smoke, damages retinal pigmented epithelial cells by triggering oxidative stress and mitochondrial dysfunction, two events causally related to the development and progression of retinal diseases. The inner mitochondrial membrane is enriched in cardiolipin, a phospholipid susceptible of oxidative modifications which determine cell-fate decision. Using ARPE-19 cell line as a model of retinal pigmented epithelium, we analyzed the potential involvement of cardiolipin in hydroquinone toxicity. Hydroquinone exposure caused an early concentration-dependent increase in mitochondrial reactive oxygen species, decrease in mitochondrial membrane potential, and rise in the rate of oxygen consumption not accompanied by changes in ATP levels. Despite mitochondrial impairment, cell viability was preserved. Hydroquinone induced cardiolipin translocation to the outer mitochondrial membrane, and an increase in the colocalization of the autophagosome adapter protein LC3 with mitochondria, indicating the induction of protective mitophagy. A prolonged hydroquinone treatment induced pyroptotic cell death by cardiolipin-mediated caspase-1 and gasdermin-D activation. Cardiolipin-specific antioxidants counteracted hydroquinone effects pointing out that cardiolipin can act as a mitochondrial “eat-me signal” or as a pyroptotic cell death trigger. Our results indicate that cardiolipin may act as a timer for the mitophagy to pyroptosis switch and propose cardiolipin-targeting compounds as promising approaches for the treatment of oxidative stress-related retinal diseases.  相似文献   

9.
An anodized surface significantly enhanced the adhesion of human osteoblast-like MG-63 cells to titanium. Using cDNA microarray analysis, five genes were differentially expressed while the rest remained unaltered. The results demonstrated that the anodized surface enhances cellular adhesion without significantly affecting the pattern of gene expression.  相似文献   

10.
To target the E7 protein of human papilloma virus 16 to the cell surface, a fusion gene was constructed. It encodes the signal peptide, part of the immunoglobulin (IgG)-like domain, the transmembrane anchor of vaccinia virus (VV) hemagglutinin (HA), and the complete E7-coding sequence. The fusion gene was expressed under the HA late promoter by a recombinant VV, designated VV-E7-HA. The E7-HA protein was displayed on the surface of cells infected with the recombinant virus and was more stable than unmodified E7. The biological properties of the VV-E7-HA virus were compared with those of a VV-E7 virus that expressed the unmodified E7 and with a VV expressing the Sig-E7-LAMP fusion protein. While the first two of these recombinants were based on VV strain Praha, the third was derived from the WR strain of VV. Infection of mice with the VV-E7-HA virus induced the formation of E7-specific antibodies with the predominance of the IgG2a isotype, whereas the other two viruses did not induce the formation of E7-specific antibodies. Unlike the other two viruses, VV-E7-HA did not induce a response of cytotoxic T lymphocytes or Th1 cells and did not protect mice against the growth of E7-expressing tumors. Thus, VV-E7-HA induced a differently polarized immune response to the E7 protein than the other two viruses.  相似文献   

11.
MicroRNA plays an important role in cell differentiation, proliferation and cell death. The current study found that miRNA-146a was up-regulated in human bronchial epithelial cells (HBECs) in response to stimulation by TGF-ß1 plus cytomix (a mixture of IL-1ß, IFN-γ and TNF-α). TGF-ß1 plus cytomix (TCM) induced apoptosis in HBECs (3.4 ± 0.6% of control vs 83.1 ± 4.0% of TCM treated cells, p < 0.01), and this was significantly blocked by the miRNA-146a mimic (8.8 ± 1.5%, p < 0.01). In contrast, a miRNA-146a inhibitor had only a modest effect on cell survival but appeared to augment the induction of epithelial-mesenchymal transition (EMT) in response to the cytokines. The MicroRNA-146a mimic appears to modulate HBEC survival through a mechanism of up-regulating Bcl-XL and STAT3 phosphorylation, and by this mechanism it could contribute to tissue repair and remodeling.  相似文献   

12.
The combined effect of surface topography and substrate rigidity in stem cell cultures is still under‐investigated, especially when biodegradable polymers are used. Herein, we assessed human bone marrow stem cell response on aliphatic polyester substrates as a function of anisotropic grooved topography and rigidity (7 and 12 kPa). Planar tissue culture plastic (TCP, 3 GPa) and aliphatic polyester substrates were used as controls. Cell morphology analysis revealed that grooved substrates caused nuclei orientation/alignment in the direction of the grooves. After 21 days in osteogenic and chondrogenic media, the 3 GPa TCP and the grooved 12 kPa substrate induced significantly higher calcium deposition and alkaline phosphatase (ALP) activity and glycosaminoglycan (GAG) deposition, respectively, than the other groups. After 14 days in tenogenic media, the 3 GPa TCP upregulated four and downregulated four genes; the planar 7 kPa substrate upregulated seven genes and downregulated one gene; and the grooved 12 kPa substrate upregulated seven genes and downregulated one gene. After 21 days in adipogenic media, the softest (7 kPa) substrates induced significantly higher oil droplet deposition than the other substrates and the grooved substrate induced significantly higher droplet deposition than the planar. Our data pave the way for more rational design of bioinspired constructs.  相似文献   

13.
14.
Transforming growth factor beta (TGF-beta) is a polypeptide growth factor that affects the accumulation of extracellular matrix by many cell types. We have examined the ability of mouse mammary epithelial (NMuMG) cells to respond to TGF-beta and assessed the effect of the growth factor on the expression of their cell surface heparan sulfate/chondroitin sulfate hybrid proteoglycan. NMuMG cells respond maximally to 3 ng/ml TGF-beta and the response is consistent with occupancy of the type III receptor. However, cells that are polarized, as shown by sequestration of the cell surface PG at their basolateral surfaces, must have the growth factor supplied to that site for maximal response. Immunological quantification of proteoglycan core protein on treated cells suggests that the cells have an unchanging number of this proteoglycan at their cell surface. Nonetheless, metabolic labeling with radiosulfate shows a approximately 2.5-fold increase in 35SO4-glycosaminoglycans in this proteoglycan fraction, defined either by its lipophilic, antigenic, or cell surface properties. Kinetic studies indicate that the enhanced radiolabeling is due to augmented synthesis, rather than slower degradation. Analysis of the glycosaminoglycan composition of the proteoglycan shows an increased amount of chondroitin sulfate, suggesting that the increased labeling per cell may be attributed to an augmented synthesis of chondroitin sulfate glycosaminoglycan on the core protein that also bears heparan sulfate, thus altering the proportions of these two glycosaminoglycans on this hybrid proteoglycan. We conclude that TGF-beta may affect NMuMG cell behavior by altering the structure and thus the activity of this proteoglycan.  相似文献   

15.
Burkholderia cenocepacia is an opportunistic pathogen that can cause serious infections in cystic fibrosis (CF) patients. The ET12 lineage appears particularly virulent in CF; however, its pathogenesis is poorly understood and may be associated with host response. To help characterize this response, the ability of B. cenocepacia to induce cytotoxicity and apoptosis in an epithelial cell model was examined. Upon infection with B. cenocepacia strain K56-2, A549 human lung epithelial cells underwent significant cell death; propidium iodine staining and DNA fragmentation assays suggested apoptosis. Initiation of cell death was independent of the type III secretion system, biofilm formation, and secreted bacterial cytotoxins. However, the frequency of cell death was lower in cells infected with a non-piliated mutant, K56-2 cblA::Tp. Furthermore, purified cbl pili were found to directly induce cytotoxicity in A549 cells and activate caspase-9, -8, -7, and -3, the major cysteine proteinases involved in apoptosis. It appears that B. cenocepacia cbl pili, which are a distinctive feature of the ET12 lineage, act as an initiator of cytotoxicity and apoptosis. Understanding the role of cbl pili in the pathogenesis of B. cenocepacia infections offers the potential for decreasing the virulence of these potentially life-threatening organisms in CF patients.  相似文献   

16.
Three human melanoma cell lines of differing invasive and metastatic potentials were cultured on either a plastic surface or a denuded amniotic basement membrane, and alterations in their cell surface proteins, invasive profiles, and the presence or absence of the 69 Kd high-affinity metastasis-associated laminin receptor were examined. Our data indicate that the labeled, precipitable cell surface proteins are different from the three cell lines when they are cultured on the same substrate, and change when the cells are cultured on a different substrate. Furthermore, the invasive potential (as measured in the in vitro Membrane Invasion Culture System) is decreased for all of the cell lines after culturing the cells on a basement membrane matrix compared to a plastic surface. Finally, we show that the 69 Kd high-affinity metastasis-associated laminin receptor can be isolated from all three cell lines cultured on the two different substrates by labeling the cell surface with trinitrobenzene sulfonic acid and immunoprecipitating these targeted proteins.  相似文献   

17.
《The Journal of cell biology》1984,98(5):1777-1787
We examined epithelial cell surface polarity in subconfluent and confluent Madin-Darby canine kidney (MDCK) cells with monoclonal antibodies directed against plasma membrane glycoproteins of 35,000, 50,000, and 60,000 mol wt. The cell surface distribution of these glycoproteins was studied by immunofluorescence and immunoelectron microscopy. At the ultrastructural level, the electron-dense reaction product localizing all three glycoproteins was determined to be uniformly distributed over the apical and basal cell surfaces of subconfluent MDCK cells as well as on the lateral surfaces between contacted cells; however, after formation of a confluent monolayer, these glycoproteins could only be localized on the basal-lateral plasma membrane. The development of cell surface polarity was followed by assessing glycoprotein distribution with immunofluorescence microscopy at selected time intervals during growth of MDCK cells to form a confluent monolayer. These results were correlated with transepithelial electrical resistance measurements of tight junction permeability and it was determined by immunofluorescence that polarized distributions of cell surface glycoproteins were established just after electrical resistance could be detected, but before the development of maximal resistance. Our observations provide evidence that intact tight junctions are required for the establishment of the apical and basal- lateral plasma membrane domains and that development of epithelial cell surface polarity is a continuous process.  相似文献   

18.
The types of cell-matrix adhesions and the signals they transduce strongly affect the cell-phenotype. We hypothesized that cells sense and respond to the three-dimensionality of their environment, which could be modulated by nano-structures on silicon surfaces. Human foreskin fibroblasts were cultured on nano-structures with different patterns (nano-post and nano-grate) and heights for 3 days. The presence of integrin alpha(5), beta(1), beta(3), paxillin and phosphorylated FAK (pFAK) were detected by western blot and immunofluorescence. Integrin beta(3) exhibited stronger signals on nano-grates. pFAK and paxillin were observed as small dot-like patterns on the cell-periphery on nano-posts and as elongated and aligned patterns on nano-grates. Collectively, our observations highlighted the presence of focal (integrin beta(1), beta(3), pFAK, paxillin), fibrillar (integrin alpha(5), beta(1)) and 3-D matrix (integrin alpha(5), beta(1), paxillin) adhesions on nano-structures. The presented nano-structures offer interesting opportunities to study the interaction of cells with topographical features comparable to the size of extracellular matrix components.  相似文献   

19.
The influence of the tool rotation on the 3D surface topography produced by the nano-cutting process is investigated using molecular dynamics simulations. The least square mean method is utilized to model the evaluation criteria for the surface roughness parameters. The effects of the tool rotation on the cutting force and the chip formation at the nano-metric scale are also evaluated. It is found that the chip formation produced with tool rotation is dominated by the ploughing and the shearing forces. With increase of the adopted rotation velocity, the cutting force is sharply increased and the smaller elastic recovery of the machined surface is observed. The 3D surface roughness parameters at the nano-metric scale are significantly influenced by the tool rotation velocity and the feed speed, and the surface quality can be improved by decreasing the tool rotation velocity and the feed speed.  相似文献   

20.
Our laboratory recently demonstrated the pattern of cell surface glycosylation of nonsecretory central airway epithelium (Dorscheid DR, Conforti AE, Hamann KJ, Rabe KF, and White SR. Histochem J 31: 145-151, 1999), but the role of glycosylation in airway epithelial cell migration and repair is unknown. We examined the functional role of cell surface carbohydrates in wound repair after mechanical injury of 1HAEo(-) human airway epithelial and primary bronchial epithelial monolayers. Wound repair stimulated by epidermal growth factor was substantially attenuated by 10(-7) M tunicamycin (TM), an N-glycosylation inhibitor, but not by the inhibitors deoxymannojirimycin or castanospermine. Wound repair of 1HAEo(-) and primary airway epithelial cells was blocked completely by removal of cell surface terminal fucose residues by alpha-fucosidase. Cell adhesion to collagen matrix was prevented by TM but was only reduced ~20% from control values with prior alpha-fucosidase treatment. Cell migration in Blind Well chambers stimulated by epidermal growth factor was blocked by pretreatment with TM but alpha-fucosidase pretreatment produced no difference from control values. These data suggest that cell surface N-glycosylation has a functional role in airway epithelial cell adhesion and migration and that N-glycosylation with terminal fucosylation plays a role in the complex process of repair by coordination of certain cell-cell functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号