首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AMP‐kinase (AMPK) activation reduces cardiac hypertrophy, although underlying molecular mechanisms remain unclear. In this study, we elucidated the anti‐hypertrophic action of metformin, specifically, the role of the AMPK/eNOS/p53 pathway. H9c2 rat cardiomyocytes were treated with angiotensin II (AngII) for 24 hrs in the presence or absence of metformin (AMPK agonist), losartan [AngII type 1 receptor (AT1R) blocker], Nω‐nitro‐L‐arginine methyl ester (L‐NAME, pan‐NOS inhibitor), splitomicin (SIRT1 inhibitor) or pifithrin‐α (p53 inhibitor). Results showed that treatment with metformin significantly attenuated AngII‐induced cell hypertrophy and death. Metformin attenuated AngII‐induced activation (cleavage) of caspase 3, Bcl‐2 down‐regulation and p53 up‐regulation. It also reduced AngII‐induced AT1R up‐regulation by 30% (P < 0.05) and enhanced AMPK phosphorylation by 99% (P < 0.01) and P‐eNOS levels by 3.3‐fold (P < 0.01). Likewise, losartan reduced AT1R up‐regulation and enhanced AMPK phosphorylation by 54% (P < 0.05). The AMPK inhibitor, compound C, prevented AT1R down‐regulation, indicating that metformin mediated its effects via AMPK activation. Beneficial effects of metformin and losartan converged on mitochondria that demonstrated high membrane potential (Δψm) and low permeability transition pore opening. Thus, this study demonstrates that the anti‐hypertrophic effects of metformin are associated with AMPK‐induced AT1R down‐regulation and prevention of mitochondrial dysfunction through the SIRT1/eNOS/p53 pathway.  相似文献   

2.
3.
Cerebral ischemia/reperfusion (I/R) injuries are common and often cause severe complications. Ozone has been applied for protecting I/R injury in animal models of several organs including cerebra, but the detailed mechanism remains unclear. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay and lactate dehydrogenase measurement were used to determine the influence of ozone on cell activity and damage of SH‐SY5Y cells. Some redox items such as catalase (CAT), malondialdehyde (MDA), glutathione peroxidase (GSH‐Px), and superoxide dismutase (SOD) were measured by enzyme‐linked immunosorbent assay. The mitochondrial membrane potential (ΔΨm) was determined by JC‐1 assay. Cytochrome‐c (cyt‐c) level in the cytoplasm and mitochondrion was measured by western blotting. Apoptosis was determined by flow cytometry, and some apoptosis‐related molecules were detected by quantitative real‐time polymerase chain reaction and western blotting. Ozone alleviated oxidative damage by increasing GSH‐Px, SOD, CAT, and decreasing MDA. Ozone decreased mitochondrial damage caused by I/R injury and inhibited the release of cyt‐c from mitochondrion to cytoplasm in SH‐SY5Y cells. The cell apoptosis caused by I/R was inhibited by ozone, and ozone could decrease apoptosis by increasing the ratio of Bcl‐2/Bax and inhibiting caspase signaling pathway in SH‐SY5Y cells. Ozone has the ability of maintaining redox homeostasis, decreasing mitochondrion damage, and inhibiting neurocytes apoptosis induced by I/R. Therefore, ozone may be a promising protective strategy against cerebral I/R injury.  相似文献   

4.
BACKGROUND : Arsenic is a ubiquitous element that is a potential carcinogen and teratogen and can cause adverse developmental outcomes. Arsenic exerts its toxic effects through the generation of reactive oxygen species (ROS) that include hydrogen peroxide (H2O2), superoxide‐derived hydroxyl ion, and peroxyl radicals. However, the molecular mechanisms by which arsenic induces cytotoxicity in murine embryonic maxillary mesenchymal (MEMM) cells are undefined. METHODS : MEMM cells in culture were treated with different concentrations of pentavalent sodium arsenate [As (V)] for 24 or 48 hr and various end points measured. RESULTS : Treatment of MEMM cells with the pentavalent form of inorganic arsenic resulted in caspase‐mediated apoptosis, accompanied by generation of ROS and disruption of mitochondrial membrane potential. Treatment with caspase inhibitors markedly blocked apoptosis. In addition, the free radical scavenger N‐acetylcysteine dramatically attenuated arsenic‐mediated ROS production and apoptosis, and exposure to arsenate increased Bax and decreased Bcl protein levels in MEMM cells. CONCLUSIONS : Taken together, these findings suggest that in MEMM cells arsenate‐mediated oxidative injury acts as an early and upstream initiator of the cell death cascade, triggering cytotoxicity, mitochondrial dysfunction, altered Bcl/Bax protein ratios, and activation of caspase‐9. Birth Defects Research (Part A), 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Mitochondrial flashes mediated by optic atrophy 1 (OPA1) fusion protein are bioenergetic responses to stochastic drops in mitochondrial membrane potential (Δψm) whose origin is unclear. Using structurally distinct genetically encoded pH‐sensitive probes, we confirm that flashes are matrix alkalinization transients, thereby establishing the pH nature of these events, which we renamed “mitopHlashes”. Probes located in cristae or intermembrane space as verified by electron microscopy do not report pH changes during Δψm drops or respiratory chain inhibition. Opa1 ablation does not alter Δψm fluctuations but drastically decreases the efficiency of mitopHlash/Δψm coupling, which is restored by re‐expressing fusion‐deficient OPA1K301A and preserved in cells lacking the outer‐membrane fusion proteins MFN1/2 or the OPA1 proteases OMA1 and YME1L, indicating that mitochondrial membrane fusion and OPA1 proteolytic processing are dispensable. pH/Δψm uncoupling occurs early during staurosporine‐induced apoptosis and is mitigated by OPA1 overexpression, suggesting that OPA1 maintains mitopHlash competence during stress conditions. We propose that OPA1 stabilizes respiratory chain supercomplexes in a conformation that enables respiring mitochondria to compensate a drop in Δψm by an explosive matrix pH flash.  相似文献   

6.
Phospholipase A2 (PLA2) from Naja naja atra venom induced apoptotic death of human leukemia K562 cells. Degradation of procaspases, production of tBid, loss of mitochondrial membrane potential, Bcl‐2 degradation, mitochondrial translocation of Bax, and cytochrome c release were observed in PLA2‐treated cells. Moreover, PLA2 treatment increased Fas and FasL protein expression. Upon exposure to PLA2, activation of p38 MAPK (mitogen‐activated protein kinase) and JNK (c‐Jun NH2‐terminal kinase) was found in K562 cells. SB202190 (p38 MAPK inhibitor) pretreatment enhanced cytotoxic effect of PLA2 and led to prolonged JNK activation, but failed to affect PLA2‐induced upregulation of Fas and FasL protein expression. Sustained JNK activation aggravated caspase8/mitochondria‐dependent death pathway, downregulated Bcl‐2 expression and increased mitochondrial translocation of Bax. SP600125 (JNK inhibitor) abolished the cytotoxic effect of PLA2 and PLA2‐induced autocrine Fas death pathway. Transfection ASK1 siRNA and overexpression of dominant negative p38α MAPK proved that ASK1 pathway was responsible for PLA2‐induced p38 MAPK and JNK activation and p38α MAPK activation suppressed dynamically persistent JNK activation. Downregulation of FADD abolished PLA2‐induced procaspase‐8 degradation and rescued viability of PLA2‐treated cells. Taken together, our results indicate that JNK‐mediated autocrine Fas/FasL apoptotic mechanism and modulation of Bcl‐2 family proteins are involved in PLA2‐induced death of K562 cells. J. Cell. Biochem. 109: 245–254, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)‐induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase‐2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism. I/R injury was induced by aortic cross‐clamping for 45 min. followed by unclamping for 24 hrs in ALDH2 knockout (ALDH2?/?) and wild‐type (WT) mice. Then myocardial infarct size, cell apoptosis and cardiac function were examined. The protein kinase C (PKC) isoform expressions and their mitochondrial translocation, the activity of dynamin‐related protein 1 (Drp1), caspase9 and caspase3 were determined by Western blot. The effects of N‐acetylcysteine (NAC) or PKC‐δ shRNA treatment on glycogen synthase kinase‐3β (GSK‐3β) activity and mitochondrial permeability transition pore (mPTP) opening were also detected. The results showed that ALDH2?/? mice exhibited increased myocardial infarct size and cardiomyocyte apoptosis, enhanced levels of cleaved caspase9, caspase3 and phosphorylated Drp1. Mitochondrial PKC‐ε translocation was lower in ALDH2?/? mice than in WT mice, and PKC‐δ was the opposite. Further data showed that mitochondrial PKC isoform ratio was regulated by cellular reactive oxygen species (ROS) level, which could be reversed by NAC pre‐treatment under I/R injury. In addition, PKC‐ε inhibition caused activation of caspase9, caspase3 and Drp1Ser616 in response to I/R stress. Importantly, expression of phosphorylated GSK‐3β (inactive form) was lower in ALDH2?/? mice than in WT mice, and both were increased by NAC pre‐treatment. I/R‐induced mitochondrial translocation of GSK‐3β was inhibited by PKC‐δ shRNA or NAC pre‐treatment. In addition, mitochondrial membrane potential (?Ψm) was reduced in ALDH2?/? mice after I/R, which was partly reversed by the GSK‐3β inhibitor (SB216763) or PKC‐δ shRNA. Collectively, our data provide the evidence that abnormal PKC‐ε/PKC‐δ ratio promotes the activation of Drp1 signalling, caspase cascades and GSK‐3β‐dependent mPTP opening, which results in mitochondrial injury‐triggered cardiomyocyte apoptosis and myocardial dysfuction in ALDH2?/? mice following I/R stress.  相似文献   

8.
Costunolide is a sesquiterpene lactone, which possesses potent anti‐cancer properties. However, there is little report about its effects on esophageal cancer. In our study, we investigated the effects of costunolide on the cell viability, cell cycle, and apoptosis in human esophageal cancer Eca‐109 cells. It was found that costunolide inhibited the growth of Eca‐109 cells in a dose‐dependent manner, which was associated with the loss of mitochondrial membrane potential (Δψm) and the production of ROS. Costunolide induced apoptosis of Eca‐109 cells as well as cell cycle arrest in G1/S phase by upregulation of P53 and P21. Costunolide triggered apoptosis in esophageal cancer cells via the upregulation of Bax, downregulation of Bcl‐2, and significant activation of caspase‐3 and poly ADP‐ribose polymerase. These effects were markedly abrogated when cells were pretreated with N‐acetylcysteine, a specific reactive oxygen specie inhibitor. These results suggest that costunolide is a potential candidate for the treatment of esophageal cancer.  相似文献   

9.
Hepatocellular carcinoma is one of the most common and deadly forms of human malignancies. JS‐K, O2‐(2, 4‐dinitrophenyl) 1‐ [(4‐ethoxycarbonyl) piperazin‐1‐yl] diazen‐1‐ium‐1, 2‐diolate, has the ability to induce apoptosis of tumor cell lines. In the present study, JS‐K inhibited the proliferation of HepG2 cells in a time‐ and concentration‐dependent manner and significantly induced apoptosis. JS‐K enhanced the ratio of Bax‐to‐Bcl‐2, released of cytochrome c (Cyt c) from mitochondria and the activated caspase‐9/3. JS‐K caused an increasing cytosolic Ca2+ and the loss of mitochondrial membrane potential. Carboxy‐PTIO (a NO scavenger) and BAPTA‐AM (an intracellular Ca2+ chelator) significantly blocked an increasing cytosolic Ca2+ in JS‐K‐induced HepG2 cells apoptosis, especially Carboxy‐PTIO. Meanwhile, Carboxy‐PTIO and BAPTA‐AM treatment both attenuate JS‐K‐induced apoptosis through upregulation of Bcl‐2, downregulation of Bax, reduction of Cyt c release from mitochondria to cytoplasm and inactivation of caspase‐9/3. In summary, JS‐K induced HepG2 cells apoptosis via Ca2+/caspase‐3‐mediated mitochondrial pathway.  相似文献   

10.
11.
Quercetin, a widely distributed bioflavonoid, has been shown to induce growth inhibition in a variety of human cancer cells. However, the regulation of survivin and Bcl‐2 on the quercetin‐induced cell‐growth inhibition and apoptosis in cancer cells remains unclear. In the present study, we report that quercetin can inhibit proliferation and induce apoptosis in HepG2 cells in dose‐ and time‐dependent manner. Hoechst 33258 and acridine orange/ethidium bromide (AO/EB) staining showed that HepG2 cells underwent the typical morphologic changes of apoptosis characterized by nuclear shrinkage, chromatin condensation, or fragmentation after exposure to quercetin. Cell‐cycle analysis reveals a significant increase of the proportion of cells in G0/G1 phase. We also demonstrate that the levels of survivin and Bcl‐2 protein expression in HepG2 cells decreased concurrently, and the levels of p53 protein increased significantly after treatment with quercetin by immunocytochemistry analysis. Relative activity of caspase‐3 and caspase‐9 increased significantly. These data clearly indicate that quercetin‐induced apoptosis is associated with caspase activation, and the levels of survivin and Bcl‐2. Our results indicate that the expression of survivin may be associated with Bcl‐2 expression, and the inhibition expression of survivin, in conjunction with Bcl‐2, might cause more pronounced apoptotic effects. Together, concurrent down‐regulated survivin and Bcl‐2 play an important role in HepG2 cell apoptosis induced by quercetin.  相似文献   

12.
Mechanosensory hair cells of the inner ear are especially sensitive to death induced by exposure to aminoglycoside antibiotics. This aminoglycoside‐induced hair cell death involves activation of an intrinsic program of cellular suicide. Aminoglycoside‐induced hair cell death can be prevented by broad‐spectrum inhibition of caspases, a family of proteases that mediate apoptotic and programmed cell death in a wide variety of systems. More specifically, aminoglycoside‐induced hair cell death requires activation of caspase‐9. Caspase‐9 activation requires release of mitochondrial cytochrome c into the cytoplasm, indicating that aminoglycoside‐induced hair cell death is mediated by the mitochondrial (or “intrinsic”) cell death pathway. The Bcl‐2 family of pro‐apoptotic and anti‐apoptotic proteins are important upstream regulators of the mitochondrial apoptotic pathway. Bcl‐2 is an anti‐apoptotic protein that localizes to the mitochondria and promotes cell survival by preventing cytochrome c release. Here we have utilized transgenic mice that overexpress Bcl‐2 to examine the role of Bcl‐2 in neomycin‐induced hair cell death. Overexpression of Bcl‐2 significantly increased hair cell survival following neomycin exposure in organotypic cultures of the adult mouse utricle. Furthermore, Bcl‐2 overexpression prevented neomycin‐induced activation of caspase‐9 in hair cells. These results suggest that the expression level of Bcl‐2 has important effects on the pathway(s) important for the regulation of aminoglycoside‐induced hair cell death. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 89–100, 2004  相似文献   

13.
Penehyclidine hydrochloride (PHC) can protect against myocardial ischemia/reperfusion (I/R) injury. However, the possible mechanisms of PHC in anoxia/reoxygenation (A/R)‐induced injury in H9c2 cells remain unclear. In the present study, H9c2 cells were pretreated with PI3K/Akt inhibitor LY294002, ATP‐sensitive K+ (KATP) channel blocker 5‐hydroxydecanoate (5‐HD), PHC, or KATP channel opener diazoxide (DZ) before subjecting to A/R injury. Cell viability and cell apoptosis were determined by cell counting kit‐8 assay and annexin V/PI assay, respectively. Myocardial injury was evaluated by measuring creatine kinase (CK) and lactate dehydrogenase (LDH) activities. Intracellular Ca2+ levels, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm), and mitochondrial permeability transition pore (mPTP) were measured. The levels of cytoplasmic/mitochondrial cytochrome c (Cyt‐C), Bax, Bcl‐2, cleaved caspase‐3, KATP channel subunits (Kir6.2 and SUR2A), and the members of the Akt/GSK‐3β and Akt/mTOR signaling pathways were determined by western blotting. We found that PHC preconditioning alleviated A/R‐induced cell injury by increasing cell viability, reducing CK and LDH activities, and inhibiting cell apoptosis. In addition, PHC preconditioning ameliorated intracellular Ca2+ overload and ROS production, accompanied by inhibition of both mPTP opening and Cyt‐C release into cytoplasm, and maintenance of ΔΨm. Moreover, PHC preconditioning activated mitochondrial KATP channels, and modulated the Akt/GSK‐3β and Akt/mTOR signaling pathways. Similar effects were observed upon treatment with DZ. Pretreatment with LY294002 or 5‐HD blocked the beneficial effects of PHC. These results suggest that the protective effects of PHC preconditioning on A/R injury may be related to mitochondrial KATP channels, as well as the Akt/GSK‐3β and Akt/mTOR signaling pathways.  相似文献   

14.
Abnormal mitochondrial fission and mitophagy participate in the pathogenesis of many cardiovascular diseases. Baicalein is a key active component in the roots of traditional Chinese medicinal herb Scutellaria baicalensis Georgi. It has been reported that baicalein can resist cardiotoxicity induced by several stress, but the mechanisms of baicalein operate in the protection of cardiomyocytes need to be researched further. Here we report that baicalein can promote cell survival under oxidative stress by up‐regulating the expression level of MARCH5 in cardiomyocytes. Pre‐treatment cells or mice with baicalein can stabilize the expression of MARCH5, which plays a crucial role in the regulation of mitochondrial network and mitophagy. Overexpressed MARCH5 is able to against H2O2 and ischaemia/reperfusion (I/R) stress by suppressing mitochondrial fission and enhancing mitophagy, and then attenuate cells apoptosis. Altogether, our present study investigated that baicalein exerts a protective effect through regulating KLF4‐MARCH5‐Drp1 pathway, our research also provided a novel theoretical basis for the clinical application of baicalein.  相似文献   

15.
Fat accumulation in obese individuals worsens the clinical outcomes of cardiovascular disease (CVD). Paradoxically, increased circulating adipocytokines secreted from visceral fat may confer cardioprotective effects. Visfatin, a novel adipocytokine, has anti‐diabetic, anti‐tumor, and pro‐inflammatory properties. However, its effects on cardiomyocytes and the underlying mechanisms remain unknown. This article demonstrated that visfatin counteracted H2O2‐induced apoptotic damage in H9c2 cardiomyocytes in a time‐dependent manner. Qualitative immunofluorescence approaches demonstrated that visfatin pretreatment attenuated H2O2‐induced DNA fragmentation (TdT‐mediated dUTP‐biotin nick end‐labeling), phosphatidyl serine exposure (Annexin V/PI staining), and mitochondrial membrane potential (ΔΨm) depolarization (JC‐1 staining). Biochemical studies on cardiomyoctes showed improved cell viability and reduced caspase‐3 activation caused by visfatin pretreatment. Visfatin did not inhibit the death receptor‐dependent apoptotic pathways, as characterized by its absence in both Fas and TNFR1 down‐regulation. Instead, visfatin specifically suppressed the mitochondria‐dependent apoptotic pathways, as characterized by changed levels of p53 and its downstream Bcl‐2 family genes. Visfatin also up‐regulated the protein levels of phosphorylated AMPK, and the anti‐apoptotic action of visfatin was attenuated by the AMPK‐specific inhibitor compound C. These results suggested that visfatin plays a critical role in cardioprotection by suppressing myocardial apoptosis via AMPK activation. These findings may be the missing link between obesity and CVD. J. Cell. Physiol. 228: 495–501, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Numerous studies have demonstrated the therapeutic effect of bone mesenchymal stem cells on spinal cord injury (SCI), especially on neural stem cells (NSCs). However, the predominant mechanisms of bone mesenchymal stem cells (BMSCs) are unclear. Recently, some researchers have found that paracrine signaling plays a key role in the therapeutic capacity of BMSCs and emphasized that the protective effect of BMSCs may be due to paracrine factors. In this study, we aimed to investigate the potential mechanisms of BMSCs to protect NSCs. NSCs were identified by immunocytochemistry. The oxidative stress environment was simulated by H2O2 (50, 100, 200 μM) for 2 h. The apoptotic rate of the NSCs was detected via flow cytometry. Lactate dehydrogenase (LDH), malondialdehyde (MDA), and superoxide dismutase (SOD) activity were evaluated via corresponding assay kits. Western blot was used to detect the expressions of Notch1, HES1, caspase‐3, cleave caspase‐3, Bax, and Bcl‐2. We found that H2O2 could significantly induce the apoptosis of NSCs, increase LDH, MDA levels, and decrease SOD activity by activating the Notch1 signaling pathway. DAPT (the specific blocker of Notch1) and BMSC‐conditioned medium (BMSC‐CM) could significantly prevent the apoptotic effect and oxidative stress injury on NSCs that were treated with H2O2. We also revealed that BMSC‐CM could decrease the expression of Notch1, Hes1, cleave caspase‐3, Bax, and increases the expression of Bcl‐2 in NSCs, which was induced by H2O2. These results have revealed that BMSC‐CM can neutralize the effect against oxidative stress injury on the apoptosis of NSCs by inhibiting the Notch1 signaling pathway.  相似文献   

17.
l ‐Glutamine (Gln) starvation rapidly triggers apoptosis in Sp2/0‐Ag14 (Sp2/0) murine hybridoma cells. Here, we report on the role played by the stress‐activated kinase p38 mitogen‐activated protein kinase (MAPK) in this process. p38 activation was detected 2 h after Gln withdrawal and, although treatment with the p38 inhibitor SB203580 did not prevent caspase activation in Gln‐starved cells, it reduced the occurrence of both nuclear condensation/fragmentation and apoptotic body formation. Similarly, transfection of Sp2/0 cells with a dominant negative p38 MAPK reduced the incidence of nuclear pyknosis and apoptotic body formation following 2 h of Gln starvation. Gln withdrawal‐induced apoptosis was blocked by the overexpression of the anti‐apoptotic protein Bcl‐xL or by the caspase inhibitor Z‐VAD‐fmk. Interestingly, Bcl‐xL expression inhibited p38 activation, but Z‐VAD‐fmk treatment did not, indicating that activation of this MAPK occurs downstream of mitochondrial dysfunction and is independent of caspases. Moreover, the anti‐oxidant N‐acetyl‐l ‐cysteine prevented p38 phosphorylation, showing that p38 activation is triggered by an oxidative stress. Altogether, our findings indicate that p38 MAPK does not contribute to the induction of apoptosis in Gln‐starved Sp2/0 cells. Rather, Gln withdrawal leads to mitochondrial dysfunction, causing an oxidative stress and p38 activation, the latter contributing to the formation of late morphological features of apoptotic Sp2/0 cells. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Pseudomonas aeruginosa use N‐(3‐oxododecanoyl)‐homoserine lactone (C12) as a quorum‐sensing molecule to regulate gene expression in the bacteria. It is expected that in patients with chronic infections with P. aeruginosa, especially as biofilms, local [C12] will be high and, since C12 is lipid soluble, diffuse from the airways into the epithelium and underlying fibroblasts, capillary endothelia and white blood cells. Previous work showed that C12 has multiple effects in human host cells, including activation of apoptosis. The present work tested the involvement of Bak and Bax in C12‐triggered apoptosis in mouse embryo fibroblasts (MEF) by comparing MEF isolated from embryos of wild‐type (WT) and Bax?/?/Bak?/? (DKO) mice. In WT MEF C12 rapidly triggered (minutes to 2 h): activation of caspases 3/7 and 8, depolarization of mitochondrial membrane potential (Δψmito), release of cytochrome C from mitochondria into the cytosol, blebbing of plasma membranes, shrinkage/condensation of cells and nuclei and, subsequently, cell killing. A DKO MEF line that was relatively unaffected by the Bak/Bax‐dependent proapoptotic stimulants staurosporine and etoposide responded to C12 similarly to WT MEF: activation of caspase 3/7, depolarization of Δψmito and release of cytochrome C and cell death. Re‐expression of Bax or Bak in DKO MEF did not alter the WT‐like responses to C12 in DKO MEF. These data showed that C12 triggers novel, rapid proapoptotic Bak/Bax‐independent responses that include events commonly associated with activation of both the intrinsic pathway (depolarization of Δψmito and release of cytochrome C from mitochondria into the cytosol) and the extrinsic pathway (activation of caspase 8). Unlike the proapoptotic agonists staurosporine and etoposide that release cytochrome C from mitochondria, C12's effects do not require participation of either Bak or Bax.  相似文献   

19.
There are controversies about the mechanism of myocardium apoptosis in hypertensive heart disease. The aim of this study was to investigate the relationship among autophagy, Cx43 and apoptosis in aged spontaneously hypertensive rats (SHRs) and establish whether Aliskiren is effective or not for the treatment of myocardium apoptosis. Twenty‐one SHRs aged 52 weeks were randomly divided into three groups, the first two receiving Aliskiren at a dose of 10 and 25 mg/kg/day respectively; the third, placebo for comparison with seven Wistar‐Kyoto (WKY) as controls. After a 2‐month treatment, systolic blood pressure (SBP), heart to bw ratios (HW/BW%) and angiotensin II (AngII) concentration were significantly enhanced in SHRs respectively. Apoptotic cardiomyocytes detected with TUNEL and immunofluorescent labelling for active caspase‐3 increased nearly fourfolds in SHRs, with a decline in the expression of survivin and AKT activation, and an increase in caspase‐3 activation and the ratio of Bax/Bcl‐2. Myocardium autophagy, detected with immunofluorescent labelling for LC3‐II, increased nearly threefolds in SHRs, with the up‐regulation of Atg5, Atg16L1, Beclin‐1 and LC3‐II. The expression of Cx43 plaque was found to be down‐regulated in SHRs. Aliskiren significantly reduced SBP, HW/BW%, AngII concentration and the expression of AT1R. Thus, Aliskiren protects myocardium against apoptosis by decreasing autophagy, up‐regulating Cx43. These effects showed a dose‐dependent tendency, but no significance. In conclusion, the myocardium apoptosis developed during the hypertensive end‐stage of SHRs could be ameliorated by Aliskiren via the regulation of myocardium autophagy and maladaptive remodelling of Cx43.  相似文献   

20.
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta. Although understanding of the pathogenesis of PD remains incomplete, increasing evidence from human and animal studies has suggested that oxidative stress is an important mediator in its pathogenesis. Astaxanthin (Asx), a potent antioxidant, has been thought to provide health benefits by decreasing the risk of oxidative stress‐related diseases. This study examined the protective effects of Asx on 6‐hydroxydopamine (6‐OHDA)‐induced apoptosis in the human neuroblastoma cell line SH‐SY5Y. Pre‐treatment of SH‐SY5Y cells with Asx suppressed 6‐OHDA‐induced apoptosis in a dose‐dependent manner. In addition, Asx strikingly inhibited 6‐OHDA‐induced mitochondrial dysfunctions, including lowered membrane potential and the cleavage of caspase 9, caspase 3, and poly(ADP‐ribose) polymerase. In western blot analysis, 6‐OHDA activated p38 MAPK, c‐jun NH2‐terminal kinase 1/2, and extracellular signal‐regulated kinase 1/2, while Asx blocked the phosphorylation of p38 MAPK but not c‐jun NH2‐terminal kinase 1/2 and extracellular signal‐regulated kinase 1/2. Pharmacological approaches showed that the activation of p38 MAPK has a critical role in 6‐OHDA‐induced mitochondrial dysfunctions and apoptosis. Furthermore, Asx markedly abolished 6‐OHDA‐induced reactive oxygen species generation, which resulted in the blockade of p38 MAPK activation and apoptosis induced by 6‐OHDA treatment. Taken together, the present results indicated that the protective effects of Asx on apoptosis in SH‐SY5Y cells may be, at least in part, attributable to the its potent antioxidative ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号