共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA damage induced by paclitaxel and DNA repair capability of peripheral blood lymphocytes as evaluated by the alkaline comet assay 总被引:2,自引:0,他引:2
This study was designed to assess whether the chemotherapeutic drug paclitaxel can induce DNA damage in peripheral blood lymphocytes of human healthy donors, and to evaluate if such damage could be repaired. Venous blood was collected by routine venipuncture, the lymphocytes were isolated and cultured and then treated with 100nM, 500nM, 10microM, and 30microM of taxol for 4h. The alkaline comet assay technique was used to quantify the level of DNA damage and the DNA repair in lymphocytes. A significant increase in DNA damage was achieved when the cells were incubated with paclitaxel concentrations of 10microM or above. To test the DNA repair capability, the lymphocytes were allowed to recover for 2, 4, 6, and 24h. The DNA damage was almost completely repaired after 24h of incubation demonstrating a time-dependent repair capability. In conclusion, we demonstrate that paclitaxel induces DNA damage in peripheral blood lymphocytes and that this damage can be repaired. 相似文献
2.
Genotoxicity of cadmium chloride in human lymphocytes evaluated by the comet assay and cytogenetic tests 总被引:3,自引:0,他引:3
Ruica Rozgaj Vilena Kauba Aleksandra Fu
i 《Journal of trace elements in medicine and biology》2002,16(3):187-192
Peripheral blood lymphocytes were tested in vitro for genotoxic effects of cadmium chloride. Whole blood samples of four healthy, non-smoking subjects were preincubated with CdCl2 in concentrations of 10(-4), 10(-3), and 5 . 10(-3) mol/L for three hours before the cells were assessed for DNA-damage using the single cell alkaline gel electrophoresis assay (comet assay) or cultivated for chromosomal aberrations (CA), sister chromatid exchanges (SCE), and the micronucleus (MN) test. The comet assay showed notable interindividual differences. The results of the cytogenetic tests showed an increase in the frequency of CA, MN, and SCE with CdCl2 in the treated cultures, yet none was able to show a correlation between concentrations of cadmium chloride and the frequency of damages. The MN slides were stained with Giemsa and with DNA fluorochrome 4', 6'-diamidino-2-phenylindole (DAPI). The frequency of MN in slides stained with DAPI was significantly higher than in those stained with Giemsa, which might be due to an underestimation of small micronuclei in Giemsa-stained slides. 相似文献
3.
G. Brozovic N. Orsolic R. Rozgaj V. Kasuba F. Knezevic A. H. Knezevic V. Benkovic D. Lisicic N. Borojevic D. Dikic 《Journal of applied genetics》2010,51(1):79-86
The relationship between DNA damage and repair of peripheral blood leukocytes, liver, kidney and brain cells was investigated
in Swiss albino mice (Mus musculus L.) after exposure to sevoflurane (2.4 vol% for 2 h daily, for 3 days). Genetic damage of mouse cells was investigated by
the comet assay and micronucleus test. To perform the comet assay, mice were divided into a control group and 4 groups of
exposed mice sacrificed on day 3 of the experiment, at 0, 2, 6 or 24 h after the last exposure to sevoflurane. Mean tail length
(TL), tail moment (TM), and tail intensity (TI) values were significantly higher in exposed mice (all examined organs) than
in the control group. Significant DNA damage immediately after exposure to sevoflurane was observed in leukocytes. Damage
induction in the liver, kidney, and brain occurred 6 h later than in leukocytes, as expected according to the toxicokinetics
of the drug, where blood is the first compartment to absorb sevoflurane. However, none of the tested tissues revealed signs
of repair until 24 h after the exposure. To distinguish the unrepaired genome damage in vivo, the micronucleus test was applied.
Number of micronuclei in reticulocytes showed a statistically significant increase, as compared with the control group at
all observed times after the treatment. 相似文献
4.
Toluene is used widely, not only in industry, but also in households where toluene exposure and abuse can occur. To estimate the genotoxic risk of toluene exposure, DNA damage was determined in peripheral lymphocytes of 20 glue sniffers and 20 age-matched controls by use of the alkaline comet assay. Urinary hippuric acid and o-cresol excretion rates, which are used as a marker for toluene exposure, were also measured in sniffers and compared with historical control values. The increase in genetic damage in sniffers was statistically significant as compared to control subjects (P<0.0001). The mean values of the hippuric acid and o-cresol excretion rate for glue sniffers was 73- and 1582-fold higher, respectively, than in controls and confirms the putative exposure. Education of the general public and efforts to keep adolescents away from volatile solvent-based products, which may lead to a desire of sniffing in the future, would be advisable. 相似文献
5.
Silvia Franzellitti Paola Valbonesi Nicola Ciancaglini Carla Biondi Andrea Contin Ferdinando Bersani Elena Fabbri 《Mutation research》2010,683(1-2):35-42
One of the most controversial issue regarding high-frequency electromagnetic fields (HF-EMF) is their putative capacity to affect DNA integrity. This is of particular concern due to the increasing use of HF-EMF in communication technologies, including mobile phones. Although epidemiological studies report no detrimental effects on human health, the possible disturbance generated by HF-EMF on cell physiology remains controversial. In addition, the question remains as to whether cells are able to compensate their potential effects. We have previously reported that a 1-h exposure to amplitude-modulated 1.8 GHz sinusoidal waves (GSM-217 Hz, SAR = 2 W/kg) largely used in mobile telephony did not cause increased levels of primary DNA damage in human trophoblast HTR-8/SVneo cells. Nevertheless, further investigations on trophoblast cell responses after exposure to GSM signals of different types and durations were considered of interest. In the present work, HTR-8/SVneo cells were exposed for 4, 16 or 24 h to 1.8 GHz continuous wave (CW) and different GSM signals, namely GSM-217 Hz and GSM-Talk (intermittent exposure: 5 min field on, 10 min field off). The alkaline comet assay was used to evaluate primary DNA damages and/or strand breaks due to uncompleted repair processes in HF-EMF exposed samples. The amplitude-modulated signals GSM-217 Hz and GSM-Talk induced a significant increase in comet parameters in trophoblast cells after 16 and 24 h of exposure, while the un-modulated CW was ineffective. However, alterations were rapidly recovered and the DNA integrity of HF-EMF exposed cells was similar to that of sham-exposed cells within 2 h of recovery in the absence irradiation. Our data suggest that HF-EMF with a carrier frequency and modulation scheme typical of the GSM signal may affect the DNA integrity. 相似文献
6.
Brozovic G Orsolic N Knezevic F Horvat Knezevic A Benkovic V Sakic K Borojevic N Dikic D 《Journal of applied genetics》2011,52(3):355-361
The aim of this study was to evaluate the genotoxicity of repeated exposure to isoflurane or halothane and compare it with
the genotoxicity of repeated exposure to cisplatin. We also determined the genotoxicity of combined treatment with inhalation
anaesthetics and cisplatin on peripheral blood leucocytes (PBL), brain, liver and kidney cells of mice. The mice were divided
into six groups as follows: control, cisplatin, isoflurane, cisplatin–isoflurane, halothane and cisplatin–halothane, and were
exposed respectively for three consecutive days. The mice were treated with cisplatin or exposed to inhalation anaesthetic;
the combined groups were exposed to inhalation anaesthetic after treatment with cisplatin. The alkaline comet assay was performed.
All drugs had a strong genotoxicity (P < 0.05 vs. control group) in all of the observed cells. Isoflurane caused stronger DNA damage on the PBL and kidney cells,
in contrast to halothane, which had stronger genotoxicity on brain and liver cells. The combination of cisplatin and isoflurane
induced lower genotoxicity on PBL than isoflurane alone (P < 0.05). Halothane had the strongest effect on brain cells, but in the combined treatment with cisplatin, the effect decreased
to the level of cisplatin alone. Halothane also induced the strongest DNA damage of the liver cells, while the combination
with cisplatin increased its genotoxicity even more. The genotoxicity of cisplatin and isoflurane on kidney cells were nearly
at the same level, but halothane caused a significantly lower effect. The combinations of inhalation anaesthetics with cisplatin
had stronger effects on kidney cells than inhalation anaesthetics alone. The observed drugs and their combinations induced
strong genotoxicity on all of the mentioned cells. 相似文献
7.
Omar García Tania Mandina 《Mutation Research - Genetic Toxicology and Environmental Mutagenesis》2005,565(2):191-197
The comet assay is one of the most versatile and popular tools for evaluating DNA damage. Its sensitivity to low dose radiation has been tested in vitro, but there are limited data showing its application and sensitivity in chronic exposure situations. The influence of the internal contamination caused by the Chernobyl accident on the level of DNA damage was evaluated by the comet assay on lymphocytes of 56 Ukrainian children. The study was performed during 2003 on children with demonstrable 137Cs internal contamination caused by food consumption. The children were selected for the study immediately after a 137Cs whole body counter measurement of internal contamination. The minimal detectable amount of 137Cs was 75 Bq. The control group included 29 children without detectable internal contamination, while in the exposed group 27 children with measured activity between 80 and 4037 Bq and committed effective dose between 54 and 3155 μSv were included. Blood samples were taken by a finger prick. The alkaline version of the comet assay was used, in combination with silver stained comets and arbitrary units (AU), for comet measurement. Factors such as disease, medical treatment, surface contamination of children's living location, etc., were considered in the study. Non-significant differences (p > 0.05) in DNA damage in control (9.0 ± 5.7 AU) versus exposed (8.5 ± 4.8 AU) groups were found. These results suggest that low doses of 137Cs internal contamination are not able to produce detectable DNA damage under the conditions used for the comet assay in this study. Further studies considering effects of high exposure should be performed on chronically exposed people using this assay. 相似文献
8.
9.
Oxaliplatin is frequently used in the therapy of cancer. In DNA, oxaliplatin induces, like cisplatin, the formation of crosslinks, which are commonly accepted as being responsible for the cytotoxicity of platinum agents. The detection of oxaliplatin-induced DNA crosslink formation and repair could be a good measure of assessing how a patient is responding to the agent. In this study, we used a validated modification of the alkaline comet assay for detecting the presence of these crosslinks in vitro and in cancer patients. The H460 tumour cell line was treated in vitro with a range of oxaliplatin and cisplatin doses, and the subsequent crosslink formation and repair compared between the two agents. In addition, lymphocytes from cancer patients undergoing oxaliplatin-based chemotherapy were assayed for the formation and repair of oxaliplatin-induced crosslinks. A dose-response was observed in the in vitro samples, with cisplatin producing more crosslinks than oxaliplatin at equimolar concentrations and lesions induced by both agents showing different repair efficiencies. Furthermore, evidence of crosslink formation and repair was observed in the peripheral blood lymphocytes of all cancer patients studied, along with the detection of interindividual variability in crosslink formation and repair efficiencies. To the best of our knowledge, this is the first time that oxaliplatin DNA crosslinks have been detected either in vitro or in patient samples using the alkaline comet assay. Due to its sensitivity, rapidity, small cell sample and low cost, the alkaline comet assay is a good method for the detection of oxaliplatin-induced crosslinks and their subsequent repair and, in future clinical studies, could prove to be a valuable tool in assessing/predicting a patient's response to chemotherapy. 相似文献
10.
This study has determined the sensitivity of the alkaline comet assay for the detection of strand breaks in the DNA of cells taken from a whole organism rather than a single cell type as in previously reported studies. The assay has been performed on cells from whole zebrafish larvae irradiated for 1 or 24 h at dose rates of 0.4, 1.2 or 7.2 mGy/h. Zebrafish larvae exposed to only 1.2 mGy/h of gamma-radiation for 1h showed a statistically significant increase in DNA damage compared to controls. This represents a high sensitivity of this animal model for DNA damage and of the comet assay protocol used for detecting such damage. Increasing the exposure time from 1 to 24 h caused significant increases in DNA damage in zebrafish larvae, although the modest size of these increases in damage for the relatively large increases (24 times) in total absorbed dose indicates that dose rate may be the major factor in determining the level of DNA damage observed under the conditions of these experiments. 相似文献
11.
DNA damage evaluated by the comet assay in lymphocytes of children with 137Cs internal contamination caused by the Chernobyl accident 总被引:1,自引:0,他引:1
The comet assay is one of the most versatile and popular tools for evaluating DNA damage. Its sensitivity to low dose radiation has been tested in vitro, but there are limited data showing its application and sensitivity in chronic exposure situations. The influence of the internal contamination caused by the Chernobyl accident on the level of DNA damage was evaluated by the comet assay on lymphocytes of 56 Ukrainian children. The study was performed during 2003 on children with demonstrable 137Cs internal contamination caused by food consumption. The children were selected for the study immediately after a 137Cs whole body counter measurement of internal contamination. The minimal detectable amount of 137Cs was 75 Bq. The control group included 29 children without detectable internal contamination, while in the exposed group 27 children with measured activity between 80 and 4037 Bq and committed effective dose between 54 and 3155 microSv were included. Blood samples were taken by a finger prick. The alkaline version of the comet assay was used, in combination with silver stained comets and arbitrary units (AU), for comet measurement. Factors such as disease, medical treatment, surface contamination of children's living location, etc., were considered in the study. Non-significant differences (p > 0.05) in DNA damage in control (9.0 +/- 5.7 AU) versus exposed (8.5 +/- 4.8 AU) groups were found. These results suggest that low doses of 137Cs internal contamination are not able to produce detectable DNA damage under the conditions used for the comet assay in this study. Further studies considering effects of high exposure should be performed on chronically exposed people using this assay. 相似文献
12.
Møller P 《Mutation research》2006,612(2):84-104
Genotoxicity measured by the comet assay is expressed by different researchers using parameters that are not easy to conceptualize, except for percent tail DNA (%T) or visual score (arbitrary units). A total of 125 publications have reported genotoxicity as DNA damage (representing strand breaks, alkaline labile sites, and transient repair sites), endonuclease III (ENDOIII), or formamidopyrimidine DNA glycosylase (FPG) sensitive sites. I have recalculated the visual score so that it is expressed in the range of 0-100, similar to that of %T. Similar values were obtained for DNA damage and ENDOIII sites, regardless of whether of the data were reported as %T or visual score. Thus, these endpoints can be used interchangeably, assuming that the visual score is expressed in the 0-100 range. Pooled analysis of %T and visual score data showed that the median (25-75%) values of DNA damage, ENDOIII, and FPG sites were 8.6 (4.4-14.5), 11.0 (4.2-19.5), 7.6 (3.2-14.2), respectively. The duration of alkaline treatment and electrophoresis had no significant effect on the level of DNA damage. There was a positive correlation between age and the level of DNA damage. A sub-analysis of DNA damage obtained from European countries showed a negative correlation with latitude. In conclusion, reference values for DNA lesions measured by the comet assay are around 7-11 %T or arbitrary units. 相似文献
13.
Juchimiuk J Gnys A Maluszynska J 《Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society》2006,44(2):127-131
Higher plant cells have a long tradition of use in the studies on environmental mutagenesis in situ, especially in relation to human health risk determination. The studies on the response of plant and human cells to physical and chemical mutagens showed differences in their sensitivity. The differences in the presence of cell components in plants and humans could influence such response. Additionally, the level of the organization of the employed material could influence DNA-damaging effect: leukocytes are isolated cells and plant--an intact organism. To preclude these obstacles, the effects of direct treatment of isolated nuclei with genotoxic agents were determined to compare the sensitivity of plant and human cells. In the present study, we have determined the DNA-damaging effects of two chemical mutagens: maleic acid hydrazide (MH) and N-methyl-N-nitroso-urea (MNU) applied to isolated nuclei of both plant and human cells. In order to compare the sensitivity of the nuclei of Nicotiana tabacum var. xanthi and the nuclei of leukocytes, the acellular Comet assay was carried out. The results showed higher sensitivity of the nuclei of leukocytes as compared to the nuclei of plant cells to mutagenic treatment with the applied doses of MH and MNU. 相似文献
14.
Carvalho IM Melo Cavalcante AA Dantas AF Pereira DL Costa Rocha FC Andrade TJ Da Silva J 《Mutation research》2011,720(1-2):58-61
Sodium metabisulfite (SMB, Na(2)S(2)O(5)) is widely used in the food and pharmaceutical industries, because of its ability to inhibit proliferation of microorganisms and its antioxidant properties. We have evaluated the genotoxic effects of SMB on different tissues of the mouse, by use of the comet assay (liver and blood cells) and the micronucleus test (blood and bone marrow cells). For all tissues, significant increases in damage index and damage frequency values were observed in the SMB-treated groups (1 and 2g/kg doses) compared to the control animals. The Kruskal-Wallis test showed that the mean micronucleus frequencies in peripheral blood and bone marrow cells of mice treated with the highest dose of SMB (2g/kg) showed significant increases, when compared with controls, and a significant reduction in the ratio of polychromatic to normochromatic erythrocytes was also seen. No difference in results between sexes was observed. Our results show that high oral doses of SMB may pose a genotoxic risk. 相似文献
15.
The present study was undertaken to contribute to the characterization of the degree of variability in baseline damage in white blood cells from control population, and to investigate how this variability is associated with external and internal factors. Altogether 170 healthy volunteers, randomly selected from the general population of the Republic of Croatia, participated in the study. Two sensitive tests: the alkaline comet assay and the chromosome aberration test were applied to study the background levels of DNA damage in their white blood cells. The results point to inter-individual differences, indicating different genome sensitivity. As revealed by both assays, the background levels of DNA damage were mostly influenced by smoking habit as well as medical exposure (especially to diagnostic X-rays). Sex and age of subjects did not significantly influence the values of DNA damage recorded in the white blood cells. Although higher levels of DNA damage were recorded in blood samples collected during winter and autumn, they were mostly influenced by medicinal exposure and smoking habit. Statistical evaluation of the data confirmed that a positive correlation exists between DNA migration and the number of long-tailed nuclei found with the comet assay and the total number of chromosome aberrations. The data obtained can serve as control values in forthcoming biomonitoring studies. 相似文献
16.
DNA repair plays a major role in maintaining genetic stability, and so measurement of individual DNA repair capacity should be a valued tool in molecular epidemiology studies. The comet assay (single cell gel electrophoresis), in different versions, is commonly used to measure the repair pathways represented by strand break rejoining, removal of 8-oxoguanine, and repair of bulky adducts or UV-induced damage. Repair enzyme activity generally does not reflect the level of gene expression; but there is evidence - albeit piecemeal - that it is affected by polymorphisms in repair genes. There are mixed reports concerning the regulation of repair by environmental factors; several nutritional supplementation trials with phytochemical-rich foods have demonstrated increases in base excision repair of oxidation damage, while others have shown no effect. Exposure to genotoxic agents has in general not been found to stimulate repair. Crucial questions concerning the factors regulating repair and the causes of individual variation are as yet unanswered. 相似文献
17.
The diversion of 2‐C‐methyl‐d‐erythritol‐2,4‐cyclodiphosphate from the 2‐C‐methyl‐d‐erythritol 4‐phosphate pathway to hemiterpene glycosides mediates stress responses in Arabidopsis thaliana 下载免费PDF全文
Christian Paetz Nawaporn Onkokesung Jonathan Gershenzon Manuel Rodríguez‐Concepción Michael A. Phillips 《The Plant journal : for cell and molecular biology》2015,82(1):122-137
2‐C‐Methyl‐d ‐erythritol‐2,4‐cyclodiphosphate (MEcDP) is an intermediate of the plastid‐localized 2‐C‐methyl‐d ‐erythritol‐4‐phosphate (MEP) pathway which supplies isoprenoid precursors for photosynthetic pigments, redox co‐factor side chains, plant volatiles, and phytohormones. The Arabidopsis hds‐3 mutant, defective in the 1‐hydroxy‐2‐methyl‐2‐(E)‐butenyl‐4‐diphosphate synthase step of the MEP pathway, accumulates its substrate MEcDP as well as the free tetraol 2‐C‐methyl‐d ‐erythritol (ME) and glucosylated ME metabolites, a metabolic diversion also occurring in wild type plants. MEcDP dephosphorylation to the free tetraol precedes glucosylation, a process which likely takes place in the cytosol. Other MEP pathway intermediates were not affected in hds‐3. Isotopic labeling, dark treatment, and inhibitor studies indicate that a second pool of MEcDP metabolically isolated from the main pathway is the source of a signal which activates salicylic acid induced defense responses before its conversion to hemiterpene glycosides. The hds‐3 mutant also showed enhanced resistance to the phloem‐feeding aphid Brevicoryne brassicae due to its constitutively activated defense response. However, this MEcDP‐mediated defense response is developmentally dependent and is repressed in emerging seedlings. MEcDP and ME exogenously applied to adult leaves mimics many of the gene induction effects seen in the hds‐3 mutant. In conclusion, we have identified a metabolic shunt from the central MEP pathway that diverts MEcDP to hemiterpene glycosides via ME, a process linked to balancing plant responses to biotic stress. 相似文献
18.
A cytotoxicity,optical spectroscopy and computational binding analysis of 4‐[3‐acetyl‐5‐(acetylamino)‐2‐methyl‐2,3‐dihydro‐1,3,4‐thiadiazole‐2‐yl]phenyl benzoate in calf thymus DNA 下载免费PDF全文
Subramani Karthikeyan Ganesan Bharanidharan Rajendiran Mangaiyarkarasi Shanmugavel Chinnathambi Ragavan Sriram Krishnaswamy Gunasekaran Kandasamy Saravanan Mani Gopikrishnan Prakasarao Aruna Singaravelu Ganesan 《Luminescence》2018,33(4):731-741
In this study the interaction mechanism between newly synthesized 4‐(3‐acetyl‐5‐(acetylamino)‐2‐methyl‐2, 3‐dihydro‐1,3,4‐thiadiazole‐2‐yl) phenyl benzoate (thiadiazole derivative) anticancer active drug with calf thymus DNA was investigated by using various optical spectroscopy techniques along with computational technique. The absorption spectrum shows a clear shift in the lower wavelength region, which may be due to strong hypochromic effect in the ctDNA and the drug. The results of steady state fluorescence spectroscopy show that there is static quenching occurring while increasing the thiadiazole drug concentration in the ethidium bromide‐ctDNA system. Also the binding constant (K), thermo dynamical parameters of enthalpy change (ΔH°), entropy change (ΔS°) Gibbs free energy change (ΔG°) were calculated at different temperature (293 K, 298 K) and the results are in good agreement with theoretically calculated MMGBSA binding analysis. Time resolved emission spectroscopy analysis clearly explains the thiadiazole derivative competitive intercalation in the ethidium bromide‐ctDNA system. Further, molecular docking studies was carried out to understand the hydrogen bonding and hydrophobic interaction between ctDNA and thiadiazole derivative molecule. In addition the docking and molecular dynamics charge distribution analysis was done to understand the internal stability of thiadiazole derivative drug binding sites of ctDNA. The global reactivity of thiadiazole derivative such as electronegativity, electrophilicity and chemical hardness has been calculated. 相似文献
19.
Isoprene is produced in combustion processes and is widely used as an industrial chemical. It is a natural product emitted by plants and endogenously produced by humans and other mammals. Therefore, exposure to isoprene from both endogenous and exogenous sources is unavoidable and occurs during the entire human life. Based on evaluations of the International Agency for Research on Cancer (IARC), isoprene has been classified in Group 2B (possibly carcinogenic to humans). In the present work, we have demonstrated, by use of the single-cell gel electrophoresis assay (SCGE or comet assay), that isoprene is able to induce DNA damage in peripheral blood mononuclear cells (PBMCs) in the presence of metabolic activation. In addition, treatment of cells with the main isoprene mono-epoxide (EPOX I) induced time- and dose- dependent DNA damage in both PBMCs and human leukaemia cells (HL60). The metabolic activation system, represented by rat liver post-mitochondrial fractions (S9), was obtained from rats that had been treated - or not - with inducing agents such as phenobarbital and ethanol. The inclusion of S9 fractions (4mg protein/mL) from non-induced or phenobarbital-induced rats resulted in a statistically significant enhancement of isoprene genotoxicity. A different pattern was obtained by the addition of ethanol-induced S9, which appeared highly genotoxic by itself even in the absence of isoprene. Reducing the concentration of ethanol-induced S9 to 0.25mg protein/mL resulted in a considerable enhancement of isoprene genotoxicity. In the absence of clear epidemiological evidence of the carcinogenicity of isoprene in humans, the results of this study seem to be particularly important since they add new findings to support the classification of this chemical as possibly carcinogenic to humans. 相似文献