首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CLIC5 (chloride intracellular channel 5) is a CLIC (chloride intracellular channel) with various functions. Its high expression in skeletal muscle and association with actin‐based cytoskeleton suggests that it may play an important role in muscle tissue. This study was conducted to examine whether CLIC5 regulates the proliferation and differentiation of C2C12 myoblasts into myotubes. Differentiation of C2C12 myoblasts induced by switching to a differentiation culture medium was accompanied by a significant increase of CLIC5 protein expression level. Constitutive overexpression of CLIC5 was associated with reduced cell proliferation and more cells from G2/M phase into G0/G1 phase, followed by increased number and size of myotubes and up‐regulation of muscle‐specific proteins of myosin heavy chain, myogenin and desmin. These results demonstrate that CLIC5 is involved in C2C12 proliferation and myogenic differentiation in vitro.  相似文献   

2.
3.
4.
5.
6.
7.
本试验用醋酸钙、p38丝裂原激活蛋白激酶(p38MAPK)抑制剂SB203580及钙通道阻滞剂和激动剂刺激小鼠前体脂肪细胞。通过实时定量PCR技术检测前体脂肪细胞分化标志基因和钙信号相关受体基因表达水平,用油红O染色提取法和Fura-2/AM荧光法测定胞内脂质蓄积情况及胞浆游离Ca2+浓度([Ca2+]i)变化,以探讨钙信号调节前体脂肪细胞分化的潜在机制。结果表明:钙通道阻滞剂和激动剂显著改变了脂蛋白脂酶(LPL),过氧化物增殖激活受体γ(PPARγ)、脂肪酸合成酶(FAS)的表达水平,且影响细胞内的脂质蓄积。与降低外钙摄入相比,降低内钙释放能促进前体脂肪细胞分化(P<0.01),而提高外钙摄入与提高内钙释放相比,提高外钙摄入显著抑制前体脂肪细胞分化(P<0.01)。SB203580可降低胞浆[Ca2+]i浓度,促进前体细胞分化和脂质蓄积(P<0.01)。但钙信号并未影响维生素D受体(VDR)和细胞外钙敏感受体(CaSR)的表达水平。提示钙信号可能通过p38MAPK通路影响前体脂肪细胞分化和脂质蓄积。  相似文献   

8.
9.
10.
Intramuscular fat (IMF) is an important trait influencing meat quality, and intramuscular stromal-vascular cell (MSVC) differentiation is a key factor affecting IMF deposition. Quantitative real-time PCR (qPCR) is often used to screen the differentially expressed genes during differentiation of MSVCs, where proper reference genes are essential. In this study, we assessed 31 of previously reported reference genes for their expression suitability in porcine MSVCs derived form longissimus dorsi with qPCR. The expression stability of these genes was evaluated using NormFinder, geNorm and BestKeeper algorithms. NormFinder and geNorm uncovered ACTB, ALDOA and RPS18 as the most three stable genes. BestKeeper identified RPL13A, SSU72 and DAK as the most three stable genes. GAPDH was found to be the least stable gene by all of the three software packages, indicating it is not an appropriate reference gene in qPCR assay. These results might be helpful for further studies in pigs that explore the molecular mechanism underlying IMF deposition.  相似文献   

11.
12.
NS1619 (1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazole-2-one) is widely used as a large-conductance Ca2+-activated K+ (BKCa) channel opener. It was previously reported that activation of BKCa channels by NS1619 could protect the cardiac muscle against ischaemia and reperfusion injury. This study reports the effects of NS1619 on intracellular Ca2+ homeostasis in H9C2 and C2C12 cells as well as its molecular mechanism of action. The effects of NS1619 on Ca2+ homeostasis in C2C12 and H9C2 cells were assessed using the Fura-2 fluorescence method. Ca2+ uptake by sarcoplasmic reticulum (SR) vesicles isolated from rat skeletal muscles and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity were measured. The effect of NS1619 on the isometric force of papillary muscle contraction in the guinea pig heart was also examined. H9C2 and C2C12 cells treated with NS1619 released Ca2+ from internal stores in a concentration-dependent manner. Ca2+ accumulation by the SR vesicles was inhibited by NS1619 treatment. NS1619 also decreased the activity of SERCA derived from rat skeletal muscle. The calcium release from cell internal stores and inhibition of SERCA by NS1619 are pH dependent. Finally, NS1619 had a profound effect on the isometric force of papillary muscle contraction in the guinea pig heart. These results indicate that NS1619 is a potent modulator of the intracellular Ca2+ concentration in H9C2 and C1C12 cells due to its interaction with SRs. The primary target of NS1619 is SERCA, which is located in SR vesicles. The effect of NS1619-mediated SERCA inhibition on cytoprotective processes should be considered.  相似文献   

13.
Signaling through the IGF-I receptor by locally produced IGF-I or -II is critical for normal skeletal muscle development and repair after injury. In most tissues, IGF action is modulated by IGF binding proteins (IGFBPs). IGFBP-5 is produced by muscle cells, and previous studies have suggested that when overexpressed it may either facilitate or inhibit IGF actions, and thus potentially enhance or diminish IGF-mediated myoblast differentiation or survival. To resolve these contradictory observations and discern the mechanisms of action of IGFBP-5, we studied its effects in cultured muscle cells. Purified wild-type (WT) mouse IGFBP-5 or a variant with diminished extracellular matrix binding (C domain mutant) each prevented differentiation at final concentrations as low as 3.5 nm, whereas analogs with reduced IGF binding (N domain mutant) were ineffective even at 100 nm. None of the IGFBP-5 variants altered cell number. An IGF-I analog (R(3)IGF-I) with diminished affinity for IGFBPs promoted full muscle differentiation in the presence of IGFBP-5(WT), showing that IGFBP-5 interferes with IGF-dependent signaling pathways in myoblasts. When IGFBP-5(WT) or variants were overexpressed by adenovirus-mediated gene transfer, concentrations in muscle culture medium reached 500 nm, and differentiation was inhibited, even by IGFBP-5(N). As 200 nm of purified IGFBP-5(N) prevented activation of the IGF-I receptor by 10 nm IGF-II as effectively as 2 nm of IGFBP-5(WT), our results not only demonstrate that IGFBP-5 variants with reduced IGF binding affinity impair muscle differentiation by blocking IGF actions, but underscore the need for caution when labeling effects of IGFBPs as IGF independent because even low-affinity analogs may potently inhibit IGF-I or -II if present at high enough concentrations in biological fluids.  相似文献   

14.
Macroautophagy (MA) regulates cellular quality control and energy balance. For example, loss of MA in aP2‐positive adipocytes converts white adipose tissue (WAT) into brown adipose tissue (BAT)‐like, enhancing BAT function and thereby insulin sensitivity. However, whether MA regulates early BAT development is unknown. We report that deleting Atg7 in myogenic Myf5+ progenitors inhibits MA in Myf5‐cell‐derived BAT and muscle. Knock out (KO) mice have defective BAT differentiation and function. Surprisingly, their body temperature is higher due to WAT lipolysis‐driven increases in fatty acid oxidation in ‘Beige’ cells in inguinal WAT, BAT and muscle. KO mice also present impaired muscle differentiation, reduced muscle mass and glucose intolerance. Our studies show that ATG7 in Myf5+ progenitors is required to maintain energy and glucose homeostasis through effects on BAT and muscle development. Decreased MA in myogenic progenitors with age and/or overnutrition might contribute to the metabolic defects and sarcopenia observed in these conditions.  相似文献   

15.
miRNAs, a kind of noncoding small RNA, play a significant role in adipose differentiation. In this study, we explored the effect of miR-324-5p in adipose differentiation, and found that miR-324-5p could promote adipocytes differentiation and increase body weight in mice. We overexpressed miR-324-5p during adipocytes differentiation, by oil red O and bodipy staining found that lipid accumulation was increased, and the expression level of adipogenic related genes were significantly increased. And the opposite experimental results were obtained after inhibiting miR-324-5p. In vivo, we injected miR-324-5p agomiR in obese mice and found that body weight, adipocyte area, and adipogenic-related gene expression level were significantly increased but lipolytic genes were decreased. To further explore the mechanism of miR-324-5p regulation in lipid accumulation, we constructed Krueppel-like factor 3 (KLF3) 3′-untranslated region luciferase reporter vector and KLF3 pcDNA 3.1 overexpression vector, and found that miR-324-5p was able to directly target KLF3. Overall, in this study we found that miR-324-5p could promote mice preadipoytes differentiation and increase mice fat accumulation by targeting KLF3.  相似文献   

16.
MicroRNAs have been regarded to play a crucial role in the proliferation of different cell types including preadipocytes. In our study, we observed that miR-129-5p was down-regulated during 3T3-L1 preadipocyte proliferation, while the expression of G3BP1 showed a contrary tendency. 5-Ethynyl-2′-deoxyuridine (EdU) incorporation assay and flow cytometry showed that overexpression of miR-129-5p could bring about a reduction in S-phase cells and G2-phase arrest. Additional study indicated that miR-129-5p impaired cell cycle-related genes in 3T3-L1 preadipocytes. Importantly, it showed that miR-129-5p directly targeted the 3UTR of G3BP1 and the expression of G3BP1 was inhibited by miR-129-5p mimic. Moreover, miR-129-5p mimic activated the p38 signaling pathway through up-regulating p38 and the phosphorylation level of p38. In a word, results in our study revealed that miR-129-5p suppressed preadipocyte proliferation via targeting G3BP1 and activating the p38 signaling pathway.  相似文献   

17.
TRPC5 channels are nonselective cation channels activated by G-protein-coupled receptors. It was previously found that recombinant TRPC5 currents are inhibited by intracellular ATP, when studied by whole-cell patch-clamp recording. In the present study, we investigated the mechanism of ATP inhibition at the single-channel level using patches from HEK-293 cells transiently transfected with TRPC5 and the M1 muscarinic receptor. In inside-out patches, application of ATP to the intracellular face of the membrane reduced TRPC5 channel activity at both positive and negative potentials without affecting the unitary current amplitude or open dwell time of the channel. The effect of ATP was rapidly reversible. These results suggest that ATP may bind to the channel protein and affect the ability of the channel to open or to remain in an open, nondesensitized state. The activity of TRPC5 channels may be influenced by cellular metabolism via changes in ATP levels.  相似文献   

18.
鸡肉肌苷酸和肌内脂肪等肉品风味性状遗传参数的估计   总被引:16,自引:1,他引:16  
陈继兰  文杰  赵桂苹  郑麦青  杨宁 《遗传》2005,27(6):898-902
对鸡肉肌苷酸(Inosine-5¢-Monophosphate,IMP)和肌内脂肪(Intramuscular fat,IMF)等重要肉品风味性状的遗传参数进行了估计,旨在从遗传理论上为确定鸡肉风味品质性状的选育方法提供依据。采用MTDFREML方法对1069只90日龄北京油鸡公鸡的相关性状的遗传力和遗传相关进行了估计,结果表明,胸肌IMP和IMF含量属中等偏低遗传力性状(h2=0.23,0.10),腹脂重(AFW)、胸肌重(BMY)、胸肌率(BMR)、腿肌重(LMY)、体重(BW)、鸡冠重(CW)和鸡冠率(CWP)的遗传力较高(h2=0.56~0.79),腹脂率(AFP)、腿肌率(LMR)、睾丸重(TW)和睾丸率(TWP)等性状的遗传力分别为0.24、0.32、0.39和0.35。IMP与胸肌率、腿肌率和尾脂厚呈较低度的表型正相关,与其他性状无明显表型相关;IMF与体重、腹脂率、尾脂厚和脂带宽呈一定程度的表型正相关(rP=0.11~0.33)。IMP与体重和鸡冠率呈中等以上程度的遗传负相关(rA=-0.38,-0.62),与胸肌率呈较高水平的遗传正相关(rA=0.57);IMF与体重和腹脂重则呈高度遗传正相关(rA=0.7 5,0.66),与腹脂率和鸡冠率呈中等水平遗传正相关(rA=0.32,0.40);IMP与IMF之间呈中低水平的遗传正相关(rA =0.27)。据此推断,可以利用家系法对IMP和IMF含量进行选择提高。  相似文献   

19.
20.
A factor that is released into the culture medium of mature adipocytes and promotes the differentiation (adipogenic conversion) of preadipocytes has been partially characterized. The factor acts in a dose-dependent manner on preadipocytes to produce up to a four-fold increase in triacylglycerol (triglyceride) content and a nine-fold increase in glycerol-3-phosphate dehydrogenase (GPDH) activity, a marker of the late phase of differentiation of preadipocytes. The material appears to be a protein, since it has a molecular weight (Superose-12 gel exclusion chromatography) of about 53 kDa, an isoelectric point (pl) of 4.7-4.9, and is inactivated by the proteases papain and chymotrypsin and extremes of pH (2 and 12). Considerations of molecular weight, isoelectric point, stability to specific proteases, and especially to the action of chemical agents [the adipogenic activity is not affected by either an oxidizing (KIO4) or a reducing agent (DTT)], lead to the conclusion that the differentiation factor is distinct from known cytokines. The authors suggest that the protein be designated adipocyte differentiation factor (ADF). ADF in vivo may act as a cytokine paracrine agent to regulate the differentiation of preadipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号