首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
RhoA inactivation enhances endothelial barrier function   总被引:9,自引:0,他引:9  
The modulation of endothelial barrier function is thought to bea function of contractile tension mediated by the cell cytoskeleton, which consists of actomyosin stress fibers (SF) linked to focal adhesions (FA). We tested this hypothesis by dissociating SF/FA withClostridium botulinum exoenzyme C3transferase (C3), an inhibitor of the small GTP-binding protein RhoA.Bovine pulmonary artery endothelial cell (EC) monolayers given C3, C3 + thrombin, thrombin, or no treatment were examined using asize-selective permeability assay and quantitative digital imagingmeasurements of SF/FA. C3 treatment disassembled SF/FA, stimulateddiffuse myosin II immunostaining, and reduced the phosphotyrosine (PY)content of paxillin and 130- to 140-kDa proteins that includedp125FAK. C3-treated monolayersdisplayed a 60-85% decline in F-actin content and a170-300% increase in EC surface area with enhanced endothelialbarrier function. This activity correlated with reorganization ofF-actin and PY protein(s) to -catenin-containing cell-cell junctions. Because C3 prevented the thrombin-induced formation ofmyosin ribbons, SF/FA, and the increased PY content of proteins, thesecharacteristics were Rho dependent. Our data show that C3 inhibition ofRho proteins leads to cAMP-like characteristics of reduced SF/FA andenhanced endothelial barrier function.

  相似文献   

3.
Endothelium forms a physical barrier that separates blood from tissue. Communication between blood and tissue occurs through the delivery of molecules and circulating substances across the endothelial barrier by directed transport either through or between cells. Inflammation promotes macromolecular transport by decreasing cell-cell and cell-matrix adhesion and increasing centripetally directed tension, resulting in the formation of intercellular gaps. Inflammation may also increase the selected transport of macromolecules through cells. Significant progress has been made in understanding the molecular and cellular mechanisms that account for constitutive endothelial cell barrier function and also the mechanisms activated during inflammation that reduce barrier function. Current concepts of mechanisms regulating endothelial cell barrier function were presented in a symposium at the 2000 Experimental Biology Conference and are reviewed here.  相似文献   

4.
Glucocorticoids (GCs) are steroid hormones that have inflammatory and immunosuppressive effects on a wide variety of cells. They are used as therapy for inflammatory disease and as a common agent against edema. The blood brain barrier (BBB), comprising microvascular endothelial cells, serves as a permeability screen between the blood and the brain. As such, it maintains homeostasis of the central nervous system (CNS). In many CNS disorders, BBB integrity is compromised. GC treatment has been demonstrated to improve the tightness of the BBB. The responses and effects of GCs are mediated by the ubiquitous GC receptor (GR). Ligand-bound GR recognizes and binds to the GC response element located within the promoter region of target genes. Transactivation of certain target genes leads to improved barrier properties of endothelial cells. In this review, we deal with the role of GCs in endothelial cell barrier function. First, we describe the mechanisms of GC action at the molecular level. Next, we discuss the regulation of the BBB by GCs, with emphasis on genes targeted by GCs such as occludin, claudins and VE-cadherin. Finally, we present currently available GC therapeutic strategies and their limitations.  相似文献   

5.
6.
Regulatory T‐cell (Treg, CD4+CD25+) dysfunction is suspected to play a key role in immune senescence and contributes to increased susceptibility to diseases with age by suppressing T‐cell responses. FoxP3 is a master regulator of Treg function, and its expression is under control of several epigenetically labile promoters and enhancers. Demethylation of CpG sites within these regions is associated with increased FoxP3 expression and development of a suppressive phenotype. We examined differences in FoxP3 expression between young (3–4 months) and aged (18–20 months) C57BL/6 mice. DNA from CD4+ T cells is hypomethylated in aged mice, which also exhibit increased Treg numbers and FoxP3 expression. Additionally, Treg from aged mice also have greater ability to suppress effector T‐cell (Teff) proliferation in vitro than Tregs from young mice. Tregs from aged mice exhibit greater redox remodeling–mediated suppression of Teff proliferation during coculture with DCs by decreasing extracellular cysteine availability to a greater extent than Tregs from young mice, creating an adverse environment for Teff proliferation. Tregs from aged mice produce higher IL‐10 levels and suppress CD86 expression on DCs more strongly than Tregs from young mice, suggesting decreased T‐cell activity. Taken together, these results reveal a potential mechanism of higher Treg‐mediated activity that may contribute to increased immune suppression with age.  相似文献   

7.
Inflammation is the major cause of endothelial barrier hyper‐permeability, associated with acute lung injury and acute respiratory distress syndrome. This study reports that p53 “orchestrates” the defence of vascular endothelium against LPS, by mediating the opposing actions of Rac1 and RhoA in pulmonary tissues. Human lung microvascular endothelial cells treated with HSP90 inhibitors activated both Rac1‐ and P21‐activated kinase, which is an essential element of vascular barrier function. 17AAG increased the phosphorylation of both LIMK and cofilin, in contrast to LPS which counteracted those effects. Mouse lung microvascular endothelial cells exposed to LPS exhibited decreased expression of phospho‐cofilin. 17AAG treatment resulted in reduced levels of active cofilin. Silencing of cofilin pyridoxal phosphate phosphatase (PDXP) blocked the LPS‐induced hyper‐permeability, and P53 inhibition reversed the 17AAG‐induced PDXP down‐regulation. P190RHOGAP suppression enhanced the LPS‐triggered barrier dysfunction in endothelial monolayers. 17AAG treatment resulted in P190RHOGAP induction and blocked the LPS‐induced pMLC2 up‐regulation in wild‐type mice. Pulmonary endothelial cells from “super p53” mice, which carry additional p53‐tg alleles, exhibited a lower response to LPS than the controls. Collectively, our findings help elucidate the mechanisms by which p53 operates to enhance barrier function.  相似文献   

8.
The role of caveolin‐1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E‐cadherin in CAV1‐dependent tumor suppression. Here, we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E‐cadherin, to unravel how CAV1 affects tumor growth and metastasis and to assess how co‐expression of E‐cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10 (cav‐1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E‐cadherin expression in B16F10 (E‐cad) cells reduces subcutaneous tumor formation and lung metastasis when intravenously injected. Importantly, co‐expression of CAV1 and E‐cadherin in B16F10 (cav‐1/E‐cad) cells abolishes tumor formation, lung metastasis, increased Rac‐1 activity, and cell migration observed with B16F10 (cav‐1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac‐1 activation in these cells.  相似文献   

9.
Etk/Bmx is a member of the Tec family of cytoplasmic non-receptor tyrosine kinases known to express in epithelial cells. We demonstrate herein that Etk activation in stably Etk-transfected epithelial Pa-4 cells resulted in a consistently increased transepithelial resistance (TER). After 24 h of hypoxic (1% O(2)) exposure, the TER and equivalent active ion transport rate (I(eq)) were reduced to <5% of the normoxia control in Pa-4 cells, whereas both TER and I(eq) were maintained at comparable and 60% levels, respectively, relative to their normoxic controls in cells with Etk activation. Moreover, Pa-4 cells exhibited an abundant actin stress fiber network with a diffuse distribution of beta-catenin at the cell periphery. By contrast, Etk-activated cells displayed a redistribution of actin to an exclusively peripheral network, with a discrete band of beta-catenin also concentrated at the cell periphery, and an altered occludin distribution profile. On the basis of these findings, we propose that Etk may be a novel regulator of epithelial junctions during physiological and pathophysiological conditions.  相似文献   

10.
Different types of high and low molecular weight extracellular RNA (eRNA) are liberated from cells upon conditions of tissue damage or vascular diseases and have been demonstrated in vivo and in vitro to influence the integrity and barrier function of the vascular endothelium. Among the types of self eRNA studied in this respect, ribosomal RNA appears to engage cytokines to promote hyperpermeability, while counteracting RNase1 serves as a potent vessel-protective factor. Different microRNAs may change the expression program of endothelial cells with consequences for cellular contacts and stability. Non-self viral RNAs are recognized by Toll-like receptors that transmit intracellular inflammation signals to disturb the vascular barrier function, largely in connection with infectious diseases. Although derived from the same nucleotide building blocks, the various forms of eRNA exhibit a multitude of molecular interactions with the endothelium that may drastically change its phenotypical characteristics. The impact of eRNA on vascular integrity in health and disease is summarized in this concise review.  相似文献   

11.
Vascular endothelial growth factor‐D (VEGF‐D) is an angiogenic and lymphangiogenic glycoprotein that facilitates tumour growth and distant organ metastasis. Our previous studies showed that VEGF‐D stimulates the expression of proteins involved in cell–matrix interactions and promoting the migration of endothelial cells. In this study, we focused on the redox homoeostasis of endothelial cells, which is significantly altered in the process of tumour angiogenesis. Our analysis revealed up‐regulated expression of proteins that form the antioxidant barrier of the cell in VEGF‐D‐treated human umbilical endothelial cells and increased production of reactive oxygen and nitrogen species in addition to a transient elevation in the total thiol group content. Despite a lack of changes in the total antioxidant capacity, modification of the antioxidant barrier induced by VEGF‐D was sufficient to protect cells against the oxidative stress caused by hypochlorite and paraquat. These results suggest that exogenous stimulation of endothelial cells with VEGF‐D induces an antioxidant response of cells that maintains the redox balance. Additionally, VEGF‐D‐induced changes in serine/threonine kinase mTOR shuttling between the cytosol and nucleus and its increased phosphorylation at Ser‐2448, lead us to the conclusion that the observed shift in redox balance is regulated via mTOR kinase signalling.  相似文献   

12.
The role of desmosomal cadherin desmocollin-2 (Dsc2) in regulating barrier function in intestinal epithelial cells (IECs) is not well understood. Here, we report the consequences of silencing Dsc2 on IEC barrier function in vivo using mice with inducible intestinal–epithelial-specific Dsc2 knockdown (KD) (Dsc2ERΔIEC). While the small intestinal gross architecture was maintained, loss of epithelial Dsc2 influenced desmosomal plaque structure, which was smaller in size and had increased intermembrane space between adjacent epithelial cells. Functional analysis revealed that loss of Dsc2 increased intestinal permeability in vivo, supporting a role for Dsc2 in the regulation of intestinal epithelial barrier function. These results were corroborated in model human IECs in which Dsc2 KD resulted in decreased cell–cell adhesion and impaired barrier function. It is noteworthy that Dsc2 KD cells exhibited delayed recruitment of desmoglein-2 (Dsg2) to the plasma membrane after calcium switch-induced intercellular junction reassembly, while E-cadherin accumulation was unaffected. Mechanistically, loss of Dsc2 increased desmoplakin (DP I/II) protein expression and promoted intermediate filament interaction with DP I/II and was associated with enhanced tension on desmosomes as measured by a Dsg2-tension sensor. In conclusion, we provide new insights on Dsc2 regulation of mechanical tension, adhesion, and barrier function in IECs.  相似文献   

13.
血管内皮屏障功能调节的研究进展   总被引:4,自引:0,他引:4  
Xiao ZL  Sun GY 《生理科学进展》1998,29(3):215-220
血管内皮屏障功能的调节机制相当复杂。α-凝血酶等炎性介质引起内皮通透生增高的机制可能是通过G蛋白激活磷脂酶,介导三磷酸肌醇等二信使产生,并进一步激活蛋白激酶C和肌球蛋白轻链激酶,最终引起肌球蛋白轻链磷酸化,从而导致内皮细胞F-肌动蛋白骨架重排,中心张力增加,细胞间裂隙形成,内皮细胞通透性发生改变。  相似文献   

14.
15.
Barrier stabilizing effects of cAMP as well as of the small GTPase Rac 1 are well established. Moreover, it is generally believed that permeability‐increasing mediators such as thrombin disrupt endothelial barrier functions primarily via activation of Rho A. In this study, we provide evidence that decrease of both cAMP levels and of Rac 1 activity contribute to thrombin‐mediated barrier breakdown. Treatment of human dermal microvascular endothelial cells (HDMEC) with Rac 1‐inhibitor NSC‐23766 decreased transendothelial electrical resistance (TER) and caused intercellular gap formation. These effects were reversed by addition of forskolin/rolipram (F/R) to increase intracellular cAMP but not by the cAMP analogue 8‐pCPT‐2′‐O‐Methyl‐cAMP (O‐Me‐cAMP) which primarily stimulates protein kinase A (PKA)‐independent signaling via Epac/Rap 1. However, both F/R and O‐Me‐cAMP did not increase TER above control levels in the presence of NSC‐23766 in contrast to experiments without Rac 1 inhibition. Because Rac 1 was required for maintenance of barrier functions as well as for cAMP‐mediated barrier stabilization, we tested the role of Rac 1 and cAMP in thrombin‐induced barrier breakdown. Thrombin‐induced drop of TER and intercellular gap formation were paralleled by a rapid decrease of cAMP as revealed by fluorescence resonance energy transfer (FRET). The efficacy of F/R or O‐Me‐cAMP to block barrier‐destabilizing effects of thrombin was comparable to Y27632‐induced inhibition of Rho kinase but was blunted when Rac 1 was inactivated by NSC‐23766. Taken together, these data indicate that decrease of cAMP and Rac 1 activity may be an important step in inflammatory barrier disruption. J. Cell. Physiol. 220: 716–726, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
17.
18.
Cardiovascular endothelial barrier dysfunction is associated with a number of cardiovascular diseases. This study aims to investigate the role of platelet endothelial cell adhesion molecule‐1 (PECAM1) in the maintenance of the vascular endothelial barrier integrate. Human umbilical vein endothelial cells (HUVECs) were cultured into monolayers using as an in vitro model to assess the endothelial barrier function. Knockdown of the gene of PECAM1 markedly reduced the transendothelial resistance and increased the permeability of the HUVEC monolayers. From the wild HUVECs, we detected a complex of PECAM1, claudin1, occluding and endothelial cell selective adhesion molecule (ESAM); such a complex was not detected in the PECAM1‐deficient HUVECs. Knockdown of either claudin1, or occludin, or ESAM, did not affect the formation of the tight junction (TJ) complex. Exposure to recombinant interleukin (IL)‐13 inhibited the expression of PECAM1 and down‐regulated the HUVEC monolayer barrier function. PECAM1 plays an important role in the formation of TJ complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Stimulation of T cells by the T‐cell receptor (TCR)/CD3 complex results in interleukin‐2 (IL‐2) synthesis and surface expression of the IL‐2 receptor (IL‐2R), which in turn drive T‐cell proliferation. However, the significance of the requirement of IL‐2 in driving T‐cell proliferation, when TCR stimulation itself delivers potential mitogenic signals, is unclear. We show that blocking of IL‐2 synthesis by Cyclosporin A (CsA) suppressed both the Concanavalin A (Con A)‐ and phorbol myristate acetate (PMA)/ionomycin‐induced proliferation of T cells. The latter is also inhibited by anti‐IL‐2R. Kinetic studies showed that T‐cell proliferation begins to become resistant to CsA inhibition by about 12 h and became largely resistant by 18 h of stimulation. PMA, the protein kinase C activator, enhanced Con A‐induced T‐cell proliferation if added only within first 12 h of stimulation, and not after that. Given the fact that, in the present study, TCR is downregulated within 2 h of Con A stimulation and T cells entered the S phase of cell cycle by about 18 h of stimulation, the above results suggest that TCR stimulation provides the initial trigger to the resting T cells, which allows the cells to traverse the first two third portions of G1 phase of cell cycle and become proliferation competent. IL‐2 action begins afterward, delivering the actual proliferation signal(s), allowing the cells to traverse the rest of G1 phase and enter the S phase of the cell cycle. J. Cell. Biochem. 76:37–43, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

20.
Endothelial barrier function is regulated in part by the transcellular transport of albumin and other macromolecules via endothelial caveolae (i.e., this process is defined as transcytosis). Using pulmonary microvascular endothelial cells, we have identified the specific interactions between a cell surface albumin-docking protein gp60 and caveolin-1 as well as components of the signaling machinery, heterotrimeric G protein (G(i))- and Src-family tyrosine kinase. Ligation of gp60 on the apical membrane induces the release of caveolae from the apical membrane and activation of endocytosis. The formed vesicles contain the gp60-bound albumin and also albumin and other solutes present in the fluid phase. Vesicles are transported in a polarized manner to the basolateral membrane, releasing their contents by exocytosis into the subendothelial space. The signaling functions of G(i) and Src are important in the release of caveolae from the plasma membrane. The Src-induced phosphorylation of caveolin-1 is crucial in regulating interactions of caveolin-1 with other components of the signaling machinery such as G(i), and key signaling entry of caveolae into the cytoplasm and endocytosis of albumin and other solutes. This review addresses the basis of transcytosis in endothelial cells, its central role as a determinant of endothelial barrier function, and signaling mechanisms involved in regulating fission of caveolae and trafficking of the formed vesicles from the luminal to abluminal side of the endothelial barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号