首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The developmental time and survival of immature stages of Neoseiulus californicus were studied at nine constant temperatures (12, 16, 24, 24, 28 32, 36, 38 and 40°C), 60–70% RH, and a photoperiod of 16 : 8 (L : D) h. The total mortality of immature N. californicus was lowest at 24°C (4.5%) and highest at 38°C (15.2%). The total developmental time decreased with increasing temperature between 12°C (18.38 days) and 32°C (2.98 days), and increased beyond 32°C. The relationship between the developmental rate and temperature was fitted by five nonlinear developmental rate models (Logan 6, Lactin 1, 2 and Briere 1, 2). The nonlinear shape of temperature development was best described by the Lactin 1 model (r2 = 0.98). The developmental variation of each stage was well described by the three‐parameter Weibull distribution model (r2 = 0.91–0.93). The temperature‐dependent developmental models of N. californicus developed in this study could be used to determine optimal temperature conditions for its mass rearing, to predict its seasonal population dynamics in fruit tree orchards or greenhouse crops, or to develop a population dynamics model of N. californicus.  相似文献   

2.
During early development, most organisms display rhythmic physiological processes that are shaped by daily changes in their surrounding environment (i.e., light and temperature cycles). In fish, the effects of daily photocycles and their interaction with temperature during early developmental stages remain largely unexplored. We investigated the existence of circadian rhythms in embryonic development and hatching of three teleost species with different daily patterns of behavior: diurnal (zebrafish), nocturnal (Senegalese sole), and blind, not entrained by light (Somalian cavefish). To this end, fertilized eggs were exposed to three light regimes: 12 h of light: 12 h of darkness cycle (LD), continuous light (LL), or continuous darkness (DD); and three species-appropriate temperature treatments: 24°C, 28°C, or 32°C for zebrafish and cavefish and 18°C, 21°C, or 24°C for sole. The results pointed to the existence of daily rhythms of embryonic development and hatching synchronized to the LD cycle, with different acrophases, depending on the species: zebrafish embryos advanced their developmental stage during the light phase, whereas sole did so during the dark phase. In cavefish, embryogenesis occurred within 24 h post fertilization (hpf) at the same pace during day or night. The hatching rhythms appeared to be controlled by a clock mechanism that restricted or “gated” hatching to a particular time of day/night (window), so that embryos that reached a certain developmental state by that time hatch, whereas those that have not wait until the next available window. Under LL and DD conditions, hatching rhythms and the gating phenomenon persisted in cavefish, in zebrafish they split into ultradian bouts of hatching occurring at 12–18-h intervals, whereas in sole DD and LL produced a 24-h delay and advance, respectively. Hatching rates were best under the LD cycle and the reported optimal temperature for each species (95.2?±?2.7% of the zebrafish and 83.3?±?0.1% of the cavefish embryos hatched at 28°C, and 93.1?±?2.9% of the sole embryos hatched at 21°C). In summary, these results revealed that hatching rhythms in fish are endogenously driven by a time-keeping mechanism, so that the day and time of hatching are determined by the interplay between the developmental state (temperature-sensitive) and the circadian clock (temperature-compensated), with the particular phasing being determined by the diurnal/nocturnal behavior of the species. (Author correspondence: javisan@um.es)  相似文献   

3.
Thyroid hormones are required for vertebrate development, and disruption of the thyroid system in developing embryos can result in a large range of morphologic and physiologic changes, including in the eye and retina. In this study, our anatomic analyses following low‐dose, chronic thyroid inhibition reveal that both methimazole (MMI) exposure and rearing temperature affect eye development in a time‐ and temperature‐dependent fashion. Maximal sensitivity to MMI for external eye development occurred at 65 hr postfertilization (hpf) for zebrafish reared at 28°C, and at 69 hpf for those reared at 31°C. Changes in eye diameter corresponded to changes in thickness of two inner retinal layers: the ganglion cell layer and the inner plexiform layer, with irreversible MMI‐induced decreases in layer thickness observed in larvae treated with MMI until 66 hpf at 28°C. We infer that maximal sensitivity to MMI between 65 and 66 hpf at 28°C indicates a critical period of thyroid‐dependent eye and retinal development. Furthermore, our results support previous work that shows spontaneous escape from MMI‐induced effects potentially due to embryonic compensatory actions, as our data show that embryos treated beyond the critical period generally resemble controls  相似文献   

4.
A new, three‐dimensional geometric morphometric approach was assessed to study the effect of developmental temperature on fish heart shape utilizing geometric morphometrics of three‐dimensional landmarks captured on digitally reconstructed zebrafish hearts. This study reports the first three‐dimensional analysis of the fish heart and demonstrates significant shape modifications occurring after three developmental temperature treatments (TD = 24, 28 or 32°C) at two distinct developmental stages (juvenile and adult fish). Elevation of TD induced ventricle roundness in juveniles, males and females. Furthermore, significant differences that have not been described so far in heart morphometric indices (i.e., ventricle sphericity, bulbus arteriosus elongation and relative location, heart asymmetry) were identified. Sex proved to be a significant regulating factor of heart shape plasticity in response to TD. This methodology offers unique benefits by providing a more precise representation of heart shape changes in response to developmental temperature that are otherwise not discernable with the previously described two‐dimensional methods. Our work provides the first evidence of three‐dimensional shape alterations of the zebrafish heart adding to the emerging rationale of temperature‐driven plastic responses of global warming and seasonal temperature disturbances in wild fish populations and in other ectothermic vertebrates as well (amphibians and reptiles).  相似文献   

5.
The development, survivorship, longevity, reproduction, and life table parameters of the Asian citrus psyllid, Diaphorina citri Kuwayama were evaluated at 10°C, 15°C, 20°C, 25°C, 28°C, 30°C and 33°C. The populations reared at 10°C and 33°C failed to develop. Between 15°C and 30°C, mean developmental period from egg to adult varied from 49.3 days at 15°C to 14.1 days at 28°C. The low‐temperature developmental thresholds for 1st through 5th instars were estimated at 11.7°C, 10.7°C, 10.1°C, 10.5°C and 10.9°C, respectively. A modified Logan model was used to describe the relationship between developmental rate and temperature. The survival of the 3rd through 5th nymphal instars at 15–28°C was essentially the same. The mean longevity of females increased with decreasing temperature within 15–30°C. The maximal longevity of individual females was recorded 117, 60, 56, 52 and 51 days at 15°C, 20°C, 25°C, 28°C and 30°C, respectively. The average number of eggs produced per female significantly increased with increasing temperature and reached a maximum of 748.3 eggs at 28°C (P<0.001). The population reared at 28°C had the highest intrinsic rate of increased (0.199) and net reproductive rate (292.2); and the shortest population doubling time (3.5 days) and mean generation time (28.6 days) compared with populations reared at 15–25°C. The optimum range of temperatures for D. citri population growth was 25–28°C.  相似文献   

6.
A laboratory study of preimaginal development, adult longevity and fecundity ofEncarsia inaron (Walker) was conducted. Preimaginal developmental times varied with temperature, from 55–60 d at 15±1°C to 14–17 d at 30±1°C. No development took place at 10°C, which was approximately the developmental minimum estimated from regression analysis of developmental rates vs. temperature in the range 15–30°C. Development was slowed and survival was reduced at 32°C. Females lived an average of 18.6 days and laid a average of 159 eggs/female at 25°C. At 25°C, average preimaginal survival was 59.3%, and the sex ratio was 73.5% female. The net reproductive rate (R0) forE. inaron calculated from these studies was 69.3, while the intrinsic rate of natural increase was 0.1686 individuals per individual per day. Oviposition was concentrated slightly in third instar nymphs of the host.  相似文献   

7.
Temperature-dependent development and oviposition component models were developed for Deraeocoris brevis (Uhler) (Hemiptera: Miridae). Egg development times decreased with increasing temperature and ranged from 35.8 d at 15 °C to 6.7 d at 32 °C. Total development times of nymphs reared on frozen Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) eggs decreased from an estimated 55.6 d at 15 °C to 9.2 d at 32 °C and 10.0 d at 34.6 °C. By fitting linear models to the data the lower developmental threshold temperatures for eggs, small nymphs (1st to 3rd instar), large nymphs (4th to 5th instar), and all nymphs combined were calculated as 10.5, 12.5, 11.8, and 11.9 °C, respectively. The thermal constants were 144.1, 90.3, 95.0, and 190.8 degree-days for each of the above stages. The non-linear model was based on a Gaussian equation, which fit the relationship between development rate and temperature well for all stages. The Weibull function provided a good fit for the distribution of development times of each stage. Adult longevity decreased with increasing temperature and ranged from 52.9 d at 21.7 to 16.8 d at 32.0 °C. D. brevis had a maximum fecundity of 471 eggs per female at 24 °C, which declined to 191 eggs per female at 32 °C. Also, three temperature-dependent components for an oviposition model of D. brevis were developed including models for total fecundity, age-specific cumulative oviposition rate, and age-specific survival rate.  相似文献   

8.
The relationship between temperature and the development of the West Indian sweet potato weevil, Euscepes postfasciatus, on an artificial larval diet containing powdered sweet potato root, was examined at different fixed temperatures from 22 to 31°C. The developmental periods for egg, larvae, and pupae stages shortened in correlation with increased temperature. The thermal constant was 769.2 degree-days and the developmental zero for female and male was 11.1 and 11.7°C, respectively. Although we can rear this weevil at temperatures ranging from 22 to 31°C, rearing temperatures should be kept between 25 and 28°C because the developmental stages were too long at 22°C and the larval period was delayed at 31°C. The basis for these developmental data will be a useful key factor in designing a plan to eradicate the weevil by using a mass-rearing system and SIT.  相似文献   

9.
Here, we show that heart rate in zebrafish Danio rerio is dependent upon two pacemaking mechanisms and it possesses a limited ability to reset the cardiac pacemaker with temperature acclimation. Electrocardiogram recordings, taken from individual, anaesthetised zebrafish that had been acclimated to 18, 23 or 28°C were used to follow the response of maximum heart rate (fHmax) to acute warming from 18°C until signs of cardiac failure appeared (up to c. 40°C). Because fHmax was similar across the acclimation groups at almost all equivalent test temperatures, warm acclimation was limited to one significant effect, the 23°C acclimated zebrafish had a significantly higher (21%) peak fHmax and reached a higher (3°C) test temperature than the 18°C acclimated zebrafish. Using zatebradine to block the membrane hyperpolarisation-activated cyclic nucleotide–gated channels (HCN) and examine the contribution of the membrane clock mechanisms to cardiac pacemaking, f Hmax was significantly reduced (by at least 40%) at all acute test temperatures and significantly more so at most test temperatures for zebrafish acclimated to 28°C vs. 23°C. Thus, HCN channels and the membrane clock were not only important, but could be modified by thermal acclimation. Using a combination of ryanodine (to block sarcoplasmic calcium release) and thapsigargin (to block sarcoplasmic calcium reuptake) to examine the contribution of sarcoplasmic reticular handling of calcium and the calcium clock, f Hmax was again consistently reduced independent of the test temperature and acclimation temperature, but to a significantly lesser degree than zatebradine for zebrafish acclimated to both 28 and 18°C. Thus, the calcium clock mechanism plays an additional role in setting pacemaker activity that was independent of temperature. In conclusion, the zebrafish cardiac pacemaker has a limited temperature acclimation ability compared with known effects for other fishes and involves two pacemaking mechanisms, one of which was independent of temperature.  相似文献   

10.
The developmental rates of various life stages ofRhagoletis completa Cresson (Diptera: Tephritidae) were determined in the laboratory at seven different constant temperatures: 8, 12, 16, 20, 24, 28, and 32±1°C, RH 80±10%, photoperiod L 16∶D8. Preoviposition developmental rate was fastest at 28°C (10±1 days, mean±SD) and slowest at 12°C (26±1 days). About 83% of the females deposited eggs at 20 and 24°C and only 25% oviposited at 32°C. Females laid the highest number of eggs at 24°C and the lowest at 8°C. Egg development increased with increasing temperatures up to 28°C, then declined. The fastest egg development was noticed at 28°C (55±1 h) and slowest at 8°C (389±2 h). Over 90% egg hatch was observed at temperatures between 12 and 32°C, but decreased to 73% at 8°C. Larval development was fastest also at 28°C (20±0.2 days). Over 65% pupation was recorded at 20 and 24°C, but decreased to 15% at 32°C and 12% at 8°C. Pupal development was most rapid at 24°C (53±1 days) and slowest at 8°C (162±2 days). More than 70% of adult emergence was noticed in treatments between 16 and 24°C but decreased to 20% at 8°C. Based on a linear regression model of temperature-development rate relationship, the lower developmental thresholds were determined to be 6.6, 5.3, 2.9, and 5°C for preoviposition, egg, larval, and pupal stages, respectively. Based on a non-linear developmental rate model, the upper developmental thresholds were 34°C for preoviposition, egg, and larval stages and 30°C for pupal stage.  相似文献   

11.
Many species of mealybugs (Hemiptera: Pseudococcidae) are serious pests of economically important crops worldwide. We evaluated the influence of constant temperatures: 14, 16, 18, 20, 22, 24, 26, 28, 30, 32 and 34°C on the life history and demographic parameters of Spalgis epius (Lepidoptera: Lycaenidae), a candidate biological control agent of various species of mealybugs. No eggs completed their development at 14 and 34°C. Egg-to-adult developmental time significantly decreased from 89.9 days at 16°C to 20.4 days at 32°C. The estimated lower temperature threshold of 10.2°C and 416.6 degree-days were required to complete egg-to-adult development. The mortality of immature stages was maximum at 16 and 32°C and minimum at 28°C. The highest lifetime fecundity was recorded at 28°C and it significantly decreased at 32°C. The longevity of adults was about three times more at 16°C than at 30 and 32°C. The net reproductive rate (R 0) significantly increased with increased temperatures up to 28°C and significantly decreased at 32°C. The mean generation time (T) significantly decreased with increased temperature up to 30°C, but it significantly increased at 32°C. The intrinsic rate of population increase (r m ) was highest at 30°C. The finite rate of increase (λ) was significantly greater at 30°C than at other temperatures. These data suggest that S. epius can develop, reproduce and survive in a wide range of temperatures and thus could be regarded a potential biological control agent of mealybugs.  相似文献   

12.
A psychrotolerant dextranase-producing bacterium was isolated from the Gaogong island seacoast near Jiangsu, China. The bacterium, denoted as DP03, was identified as Catenovulum sp. based on its phenotype, biochemical characteristics, and 16S rRNA gene comparison. The optimal enzyme production time, initial pH, temperature, and aeration conditions of strain DP03 were found to be 28 h, 8.0, 30 °C, and 25 % volume of liquid in 100-ml Erlenmeyer flasks, respectively. The ability of 1 % dextran T20 to induce dextranase was investigated. Dextranase from strain DP03 displayed its maximum activity at pH 8.0 and 40 °C and was found to be stable at 30 °C and over a broad range of pH values (pH 6–11). Scanning electron microscopy showed that dextranase from the isolate DP03 could at least partially prevent Streptococcus mutans from forming biofilms on glass coverslips.  相似文献   

13.
Preheating can increase the efficiency of commercial broiler breeding. A slow increase in temperature can counteract the negative effects of water condensation on the surface of the shell and reduces the thermal shock to the embryos. It is essential to design different preheating profiles because of the variances between breeds in terms of egg construction and the course of embryogenesis, along with the influence of the parental flocks' age on hatching rates. This study aimed to analyze six preheating profiles with different time and temperature patterns (A–F), which were immediately applied before the egg incubation began. These profiles were used for two broiler breeder strains – Hubbard Flex and Ross 308 – for the entire laying cycle divided into six age ranges: 25–30, 31–36, 37–42, 43–48, 49–54, and 55–60 wk of life. A total of 7 839 250 Hubbard Flex and 57 167 060 Ross 308 eggs were used in the study. The eggs were stored for 4–7 d before the preheating profile was applied. Mortality during incubation, hatchability, and the quality of chicks were analyzed. The most favorable results were obtained with profile B – 02 h (25.0 °C):02 h (29.4 °C):02 h (32.2 °C):02 h (35.0 °C):02 h (37.8 °C), while the worst results were obtained with profile C – 03 h (23.9 °C):03 h (25.0 °C):04 h (32.2 °C). These findings indicated that compared to a rapid temperature increase during incubation, multistage slow heating of eggs is more advantageous as it enables achieving better hatchability from apparent fertile eggs and obtaining more first-grade chicks. An analysis of the interaction of different preheating profiles with flock age and breed of parental flock revealed that profile C is not suitable for eggs from older flocks, in particular Ross 308. Deterioration of hatchability of chicks from apparent fertile eggs was also confirmed for flocks over 49 wk of life after the application of profile E – 03 h (77 °C):02 h (29.4 °C):02 h (32.2 °C):01 h (35.0 °C):02 h (37.8 °C). Increased early and late mortality of embryos was observed in the case of Hubbard Flex after the use of profile D – 03 h (25.0 °C):02 h (29.4 °C):01 h (32.2 °C):02 h (35.05 °C):02 h (37.8 °C). Based on the obtained results, it can be recommended that profile B can be applied for the entire duration of Ross 308 and Hubbard Flex flock utilization to achieve high egg hatchability and obtain high-quality chicks.  相似文献   

14.
In this study, we developed an oviposition model of Neoseiulus californicus (McGregor) with Tetranychus urticae Koch as prey. To obtain data for the model, we investigated the longevity, fecundity and survivorship of adult female N. californicus at six constant temperatures (16, 20, 24, 28, 32 and 36°C), 60–70% RH and a photoperiod of 16 : 8 (L : D) h. Longevity (average ± SE) decreased as temperature increased and was longest at 16°C (46.7 ± 5.25 days) and shortest at 36°C (12.8 ± 0.75 days). Adult developmental rate (1/average longevity) was described by the Lactin 1 model (r2 = 0.95). The oviposition period (average±SE) was also longest at 16°C (29.8 ± 2.93 days) and shortest at 36°C (6.7 ± 0.54 days). Fecundity (average±SE) was greatest at 24°C (43.8 ± 3.23 eggs) and lowest at 36°C (15.9 ± 1.50 eggs). The oviposition model comprised temperature‐dependent fecundity, age‐specific cumulative oviposition rate and age‐specific survival rate functions. The temperature‐dependent fecundity was best described by an exponential equation (r2 = 0.81). The age‐specific cumulative oviposition rate was best described by the three‐parameter Weibull function (r2 = 0.96). The age‐specific survival rate was best described by a reverse sigmoid function (r2 = 0.85).  相似文献   

15.
It is widely known that water temperature affects the swimming capacity of fish. But the effect of the rearing temperature on the swimming ability of the fish at later stages, has not had similar attention. In this study, four populations of zebrafish, were reared in different water temperatures (22, 25, 28 and 31°C) and after being acclimatized in a common temperature (26.5°C) for over a month, they were subjected to swimming trials in order to evaluate the maximum relative critical velocity (RU crit ) in each case. Fish that were reared in 22°C showed statistically significant lower performance than the ones reared in 31°C (7.72 ± 0.17 vs. 8.79 ± 0.28, means ± S.E.). Possible explanations for the observed differentiation could be the effect of early life temperature on fish muscle ontogeny or on body shape.  相似文献   

16.
In this study, we evaluated the effect of temperature on the development and reproductive biology of Serangium japonicum (Coleoptera: Coccinellidae) at seven constant temperature regimes (17, 20, 23, 26, 29, 32 and 35°C) for its effect as a predator of Bemisia tabaci (Homoptera: Aleyrodidae). Results indicated that the duration of the egg, larval and pupal stages were significantly affected by temperature. The developmental time gradually declined with the increase of temperature from 17 to 29°C, however an extension in the developmental periods was observed in the temperature range of 32 to 35°C. The survival rates of different insect stages were stable at temperatures between 20 and 32°C; however at extreme temperatures of 35°C, a sharp decrease was evident. The highest fecundity of the female (387.2 eggs per female) was recorded at 20°C. Based on these results, life tables of S. japonicum were constructed for temperatures in the range 20–35°C. The maximum reproductive rate (R 0=279.9) occurred at 26°C. The maximum values for innate capacity for increase (r m=0.1131) and the finite rate of increase (λ=1.1197) occurred at 29°C. The mean generation time (T) decreased with increased temperature, the longest of which was 76.0 days (at 20°C) and the shortest was 36.6 days (at 32°C). These results offer valuable insight on the importation and establishment of S. japonicum into new environments with diverse temperature regimes.  相似文献   

17.
Laboratory studies were conducted to assess the effect of temperature on the development of the eggs of Dociostaurus maroccanus (Thunberg) (Orthoptera, Acrididae) during anatrepsis (stages I–XIV) and during catatrepsis (stages XV–XX). The developmental rates of anatrepsis were studied at five constant temperatures ranging from 10 to 30°C. Egg development occurred over the entire range but at 10°C the embryos were unable to complete anatrepsis. The relationship between temperature and developmental times for completing anatrepsis was analysed by the non‐linear Logan type III model. The optimal temperature estimated for the development of eggs during anatrepsis was 24.7°C; the lower and upper thermal thresholds were 9°C and 31°C, respectively. Once the embryos completed anatrepsis, only those incubated at 15°C continued morphogenesis beyond stage XIV (diapause stage) without a low‐temperature exposure period. The developmental rate of catatrepsis was studied at four constant temperatures ranging from 15°C to 30°C after exposure to low‐temperature, 10°C, for 30, 60 or 90 days. For catatrepsis, temperature and developmental time were linearly and inversely related. Linear regression was used to estimate the lower developmental threshold and the degree days requirements for catatrepsis. Both decreased with longer exposure to the low temperature; the former from 13.8°C to 10.5°C and the latter from 212.8 to 171.5 degree days, following 30 and 90 days at 10°C, respectively. Our results improve the ability of decision support systems for Mediterranean locust pest management by providing better forecasts to land managers and pest advisors.  相似文献   

18.
The duration of the development of the aphelinidEncarsia tricolor Föerster (a parasitoid of the aleyrodidTrialeurodes vaporariorum (Westwood), adult size and number of mature oocytes at emergence were determined under constant and variable temperature regimes. Females developed successfully from 14 to 32°C, but a 100% of pupal mortality was observed at 34°C. Males developed successfully from 16 to 28°C and they developed faster than females. Female and male, egg to adult development at constant temperatures ranged from 51.1 (14°C) to 14.3 (28°C) days and from 32.6 (16°C) to 11.8 (28°C) days, respectively. Predictions of the rate of development at variable temperatures were more accurate when made from 2nd and 3rd degree polynomials than from linear regressions. The number of mature oocytes at emergence ranged from 0.1 (30°C) to 2.2 (20°C). FemaleE. tricolor attained the greatest size at 20–24°C. The comparison with literature data shows thatE. tricolor develops faster thanT. vaporariorum at temperatures above 15°C.  相似文献   

19.
Effect of two different seasons and hormones on pre- and postfertilization barriers in crossability were studied inVigna mungo, V. unguiculata and their crosses. Significant differences between the two seasons for pollen fall, pollen germination, tube growth and pod set were observed. In kharif season with an average temperature of 26 to 30 °C and 75 to 85 % humidity all the characters showed higher values than in the spring season with a higher temperature of 32 to 36 °C and low humidity of 40 to 50 %. Application of gibberellic acid (GA) alone and a combination of gibberellic acid, naphthaleneacetic acid (NAA) and kinetin (KIN) significantly increased the pollen fall by 7–13 %, pollen germination by 10–12 % and pollen tube growth by 27–30 %. More pollen tube abnormalities in interspecific crosses only indicates partly incompatible reaction of pollen tube in the stylar tisue. Hormonal treatments, especially GA, significantly increased the pod set and pod harvest by 20 % and 34 %, respectively. Higher pod harvest was seen in crosses withV. unguiculata as female parent. GA treatment enhanced pollen germination and pollen tube growth, and by partially overcoming embryo abortion for 10 to 12 d, immature embryos were successfully rescued forin vitro production of hybrid plantlets.  相似文献   

20.
Embryonic development and larval morphology of Chromis crusma was described from five nests sampled between 21 and 25 m depth in central Chile (33°S). From each nest, a set of c. 100 randomly selected eggs were hand-collected and transported in seawater to the laboratory. Subsets of c. 30 eggs per nest were maintained in 50 ml glass containers at a constant ambient temperature of c. 12°C (range 11.5–12.9°C). Egg length (L) and width (W) and larval notochordal length (LN) were measured from photographs. Geometric morphometric analyses were performed in newly hatched and 1 week old larvae to quantify shape changes. Ellipsoid eggs had an average (mean ± SE) size of 1.12 ± 0.05 mm L and 0.67 ± 0.02 mm W, with volume being similar throughout 15 developmental stages (i.e., ellipsoid-shaped; 0.27 mm3). Planktonic larvae hatched between 5 and 11 days at 12°C and had a mean LN of 3.13 ± 0.25 mm, a yolk sack volume of 0.03 mm3 and an oil droplet volume of 0.005 mm3. Morphological traits at hatching included: (a) lack of paired fins and jaws; (b) single medial fin fold; (c) lack of eye pigmentation; (d) yolk sac present near anterior tip; (e) melanophores distributed along ventral surface with one pair over the forehead. In order to generate an up-to-date summary of developmental traits within Pomacentridae, we reviewed literature on egg development (e.g., shape and number of oil droplets), hatching and larval traits (e.g., morphology, pigmentation patterns). Thirty-two publications accounting for 35 species were selected, where eggs, embryonic development, hatching and larval traits were found for 26, 21, 24 and 34 species, respectively. In order to evaluate potential phylogenetic and environmental relationships within the early stages of Pomacentridae, cluster analyses (Bray Curtis similarity, group average) were also performed on egg and larval traits of 22 species divided by subfamily (Stegastinae, Chrominae, Abudefdufinae, Pomacentrinae) and thermal ranges (i.e., low: 16.5°C (range: 12–21°C), medium: 24.5°C (range:21–28°C) and high: 27°C (range: 26–28°C)), suggesting that early developmental patterns can be segregated by both temperature and phylogenetic relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号