首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
The behavior of a single Aβ40 molecule within a dipalmitoylphosphatidylcholine (DPPC) bilayer was studied by all‐atom molecular dynamics simulations. The effect of membrane structure was investigated on Aβ40 behavior, secondary structure, and insertion depth. Simulations were performed at three temperatures (323, 310, and 300 K) to probe three different bilayer fluidities. Results show that at all above temperatures, the peptide contains two short helices, coil, bend, and turn structures. At 300 K, the peptide contains a region with β structure in C‐terminal region. Our results also show that Aβ decreases the bilayer thickness and the order of lipids in its vicinity which leads to water insertion into the bilayer and concomitant increase in the local fluidity. The peptide remains embedded in the bilayer at all temperatures, and become inserted into the bilayer up to several residues at 323 and 310 K. At 310 and 300 K, the dominant interaction energy between Aβ and bilayer changes from electrostatic to van der Waals. It can be proposed that at higher temperatures (e.g., 323 K), Lys28 and the C‐terminal region of the peptide play the role of two anchors that keep Aβ inside the top leaflet. This study demonstrates that Aβ molecule can perturb the integrity of cellular membranes. Proteins 2017; 85:1298–1310. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号