首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optimal source of stem cells for regenerative medicine is a major question. Embryonic stem (ES) cells have shown promise for pluripotency but have ethical issues and potential to form teratomas. Pluripotent stem cells have been produced from skin cells by either viral‐, plasmid‐ or transposon‐mediated gene transfer. These stem cells have been termed induced pluripotent stem cells or iPS cells. iPS cells may also have malignant potential and are inefficiently produced. Embryonic stem cells may not be suited for individualized therapy, since they can undergo immunologic rejection. To address these fundamental problems, our group is developing hair follicle pluripotent stem (hfPS) cells. Our previous studies have shown that mouse hfPS cells can differentiate to neurons, glial cells in vitro, and other cell types, and can promote nerve and spinal cord regeneration in vivo. hfPS cells are located above the hair follicle bulge in what we have termed the hfPS cell area (hfPSA) and are nestin positive and keratin 15 (K‐15) negative. Human hfPS cells can also differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. In the present study, human hfPS cells were transplanted in the severed sciatic nerve of the mouse where they differentiated into glial fibrillary‐acidic‐protein (GFAP)‐positive Schwann cells and promoted the recovery of pre‐existing axons, leading to nerve generation. The regenerated nerve recovered function and, upon electrical stimulation, contracted the gastrocnemius muscle. The hfPS cells can be readily isolated from the human scalp, thereby providing an accessible, autologous and safe source of stem cells for regenerative medicine that have important advantages over ES or iPS cells. J. Cell. Biochem. 107: 1016–1020, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Hair follicle-associated-pluripotent (HAP) stem cells are located in the bulge area of the hair follicle, express the stem-cell marker, nestin, and have been shown to differentiate to nerve cells, glial cells, keratinocytes, smooth muscle cells, cardiac muscle cells, and melanocytes. Transplanted HAP stem cells promote the recovery of peripheral nerve and spinal cord injuries and have the potential for heart regeneration as well. In the present study, we implanted mouse green fluorescent protein (GFP)-expressing HAP stem-cell spheres encapsulated in polyvinylidene fluoride (PVDF)-membrane cylinders into the severed sciatic nerve of immunocompetent and immunocompromised (nude) mice. Eight weeks after implantation, immunofluorescence staining showed that the HAP stem cells differentiated into neurons and glial cells. Fluorescence microscopy showed that the HAP stem cell hair spheres promoted rejoining of the sciatic nerve of both immunocompetent and immunodeficient mice. Hematoxylin and eosin (H&E) staining showed that the severed scatic nerves had regenerated. Quantitative walking analysis showed that the transplanted mice recovered the ability to walk normally. HAP stem cells are readily accessible from everyone, do not form tumors, and can be cryopreserved without loss of differentiation potential. These results suggest that HAP stem cells may have greater potential than iPS or ES cells for regenerative medicine.  相似文献   

3.
The mouse hair follicle is an easily accessible source of actively growing, pluripotent adult stem cells. C57BL transgenic mice, labeled with the fluorescent protein GFP, afforded follicle stem cells whose fate could be followed when transferred to recipient animals. These cells appear to be relatively undifferentiated since they are positive for the stem cell markers nestin and CD34 but negative for the keratinocyte marker keratin 15. These hair follicle stem cells can differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. Implanting hair follicle stem cells into the gap region of severed sciatic or tibial nerves greatly enhanced the rate of nerve regeneration and restoration of nerve function. The transplanted follicle cells transdifferentiated mostly into Schwann cells, which are known to support neuron regrowth. The treated mice regained the ability to walk essentially normally. In the present study, we severed the thoracic spinal chord of C57BL/6 immunocompetent mice and transplanted GFP-expressing hair follicle stem cells to the injury site. Most of the transplanted cells also differentiated into Schwann cells that apparently facilitated repair of the severed spinal cord. The rejoined spinal cord reestablished extensive hind-limb locomotor performance. These results suggest that hair follicle stem cells can promote the recovery of spinal cord injury. Thus, hair follicle stem cells provide an effective accessible, autologous source of stem cells for the promising treatment of peripheral nerve and spinal cord injury.  相似文献   

4.
We have previously demonstrated that nestin-expressing multipotent hair follicle stem cells are located above the hair follicle bulge and can differentiate into neurons and other cell types in vitro. The nestin-expressing hair follicle stem cells promoted the recovery of pre-existing axons when they were transplanted to the severed sciatic nerve or injured spinal cord. We have also previously demonstrated that the whisker hair follicle contains nestin-expressing stem cells in the dermal papilla (DP) as well as in the bulge area (BA), but that their origin is in the BA. In the present study, we established the technique of long-term Gelfoam? histoculture of whiskers isolated from transgenic mice in which nestin drives green fluorescent protein (ND-GFP). Confocal imaging was used to monitor ND-GFP-expressing stem cells trafficking in real time between the BA and DP to determine the fate of the stem cells. It was observed over a 2-week period that the stem cells trafficked from the BA toward the DP area and extensively grew out onto Gelfoam? forming nerve-like structures. This new method of long-term histoculture of whiskers from ND-GFP mice will enable the extensive study of the behavior of nestin-expressing multipotent stem cells of the hair follicle.  相似文献   

5.
We have previously demonstrated that the neural stem-cell marker nestin is expressed in hair follicle stem cells. Nestin-expressing cells were initially identified in the hair follicle bulge area (BA) using a transgenic mouse model in which the nestin promoter drives the green fluorescent protein (ND-GFP). The hair-follicle ND-GFP-expressing cells are keratin 15-negative and CD34-positive and could differentiate to neurons, glia, keratinocytes, smooth muscle cells and melanocytes in vitro. Subsequently, we showed that the nestin-expressing stem cells could affect nerve and spinal cord regeneration after injection in mouse models. In the present study, we separated the mouse vibrissa hair follicle into three parts (upper, middle and lower). Each part of the follicle was cultured separately in DMEM-F12 containing B-27 and 1% methylcellulose supplemented with basic FGF. After 2 mo, the nestin-expressing cells from each of the separated parts of the hair follicle proliferated and formed spheres. Upon transfer of the spheres to RPMI 1640 medium containing 10% FBS, the nestin-expressing cells in the spheres differentiated to neurons, as well as glia, keratinocytes, smooth muscle cells and melanocytes. The differentiated cells were produced by spheres which formed from nestin-expressing cells from all segments of the hair follicle. However, the differentiation potential is greatest in the upper part of the follicle. This result is consistent with trafficking of nestin-expressing cells throughout the hair follicle from the bulge area to the dermal papilla that we previously observed. The nestin-expressing cells from the upper part of the follicle produced spheres in very large amounts, which in turn differentiated to neurons and other cell types. The results of the present study demonstrate that multipotent, nestin-expressing stem cells are present throughout the hair follicle and that the upper part of the follicle can produce the stem cells in large amounts that could be used for nerve and spinal cord repair.  相似文献   

6.
We have previously demonstrated that the neural stem-cell marker nestin is expressed in hair follicle stem cells. Nestin-expressing cells were initially identified in the hair follicle bulge area (BA) using a transgenic mouse model in which the nestin promoter drives the green fluorescent protein (ND-GFP). The hair-follicle ND-GFP-expressing cells are keratin 15-negative and CD34-positive and could differentiate to neurons, glia, keratinocytes, smooth muscle cells and melanocytes in vitro. Subsequently, we showed that the nestin-expressing stem cells could affect nerve and spinal cord regeneration after injection in mouse models. In the present study, we separated the mouse vibrissa hair follicle into three parts (upper, middle and lower). Each part of the follicle was cultured separately in DMEM-F12 containing B-27 and 1% methylcellulose supplemented with basic FGF. After 2 mo, the nestin-expressing cells from each of the separated parts of the hair follicle proliferated and formed spheres. Upon transfer of the spheres to RPMI 1640 medium containing 10% FBS, the nestin-expressing cells in the spheres differentiated to neurons, as well as glia, keratinocytes, smooth muscle cells and melanocytes. The differentiated cells were produced by spheres which formed from nestin-expressing cells from all segments of the hair follicle. However, the differentiation potential is greatest in the upper part of the follicle. This result is consistent with trafficking of nestin-expressing cells throughout the hair follicle from the bulge area to the dermal papilla that we previously observed. The nestin-expressing cells from the upper part of the follicle produced spheres in very large amounts, which in turn differentiated to neurons and other cell types. The results of the present study demonstrate that multipotent, nestin-expressing stem cells are present throughout the hair follicle and that the upper part of the follicle can produce the stem cells in large amounts that could be used for nerve and spinal cord repair.  相似文献   

7.
Nestin has been shown to be expressed in the hair follicle, both in the bulge area (BA) as well as the dermal papilla (DP). Nestin-expressing stem cells of both the BA and DP have been previously shown to be pluripotent and be able to form neurons and other non-follicle cell types. The nestin-expressing pluripotent stem cells from the DP have been termed skin precursor or SKP cells. The objective of the present study was to determine the major source of nestin-expressing pluripotent stem cells in the hair follicle and to compare the ability of the nestin-expressing pluripotent stem cells from the BA and DP to repair spinal cord injury. Transgenic mice in which the nestin promoter drives GFP (ND-GFP) were used in order to observe nestin expression in the BA and DP. Nestin-expressing DP cells were found in early and middle anagen. The BA had nestin expression throughout the hair cycle and to a greater extent than the DP. The cells from both regions had very long processes extending from them as shown by two-photon confocal microscopy. Nestin-expressing stem cells from both areas differentiated into neuronal cells at high frequency in vitro. Both nestin-expressing DP and BA cells differentiated into neuronal and glial cells after transplantation to the injured spinal cord and enhanced injury repair and locomotor recovery within four weeks. Nestin-expressing pluripotent stem cells from both the BA and DP have potential for spinal cord regeneration, with the BA being the greater and more constant source.  相似文献   

8.
We have previously demonstrated that hair follicles contain nestin-expressing pluripotent stem cells that can effect nerve and spinal cord repair upon transplantation. In the present study, isolated whisker follicles from nestin-driven green fluorescent protein (ND-GFP) mice were histocultured on Gelfoam for 3 weeks for the purpose of transplantation to the spinal cord to heal an induced injury. The hair shaft was cut off from Gelfoam-histocultured whisker follicles, and the remaining part of the whisker follicles containing GFP-nestin expressing pluripotent stem cells were transplanted into the injured spinal cord of nude mice, along with the Gelfoam. After 90 days, the mice were sacrificed and the spinal cord lesion was observed to have healed. ND-GFP expression was intense at the healed area of the spinal cord, as observed by fluorescence microscopy, demonstrating that the hair follicle stem cells were involved in healing the spinal cord. Unexpectedly, the transplanted whisker follicles sprouted out remarkably long hair shafts in the spinal cord during the 90 days after transplantation of Gelfoam whisker histocultures to the injured spine. The pigmented hair fibers, grown from the transplanted whisker histocultures, curved and enclosed the spinal cord. The unanticipated results demonstrate the great potential of hair growth after transplantation of Gelfoam hair follicle histocultures, even at an ectopic site.  相似文献   

9.
We have previously demonstrated that nestin-expressing hair follicle-associated-pluripotent (HAP) stem cells are located in the bulge area. HAP stem cells have been previously shown to differentiate to neurons, glial cells, keratinocytes, smooth-muscle cells, melanocytes and cardiac-muscle cells in vitro. Subsequently, we demonstrated that HAP stem cells could effect nerve and spinal cord regeneration in mouse models, differentiating to Schwann cells and neurons. In previous studies, we established an efficient protocol for the differentiation of cardiac-muscle cells from mouse HAP stem cells. In the present study, we isolated the upper part of human hair follicles containing human HAP (hHAP) stem cells. The upper parts of human hair follicles were suspended in DMEM containing 10% FBS where they differentiated to cardiac-muscle cells as well as neurons, glial cells, keratinocytes and smooth-muscle cells. This method is appropriate for future use with human hair follicles to produce hHAP stem cells in sufficient quantities for future heart, nerve and spinal cord regeneration in the clinic.  相似文献   

10.
Recently, we reported that human amniotic membrane‐derived mesenchymal stem cells (AMMs) possess great angiogenic potential. In this study, we determined whether local injection of AMMs ameliorates peripheral neuropathy. AMMs were transplanted into injured sciatic nerves. AMM injection promoted significant recovery of motor nerve conduction velocity and voltage amplitude compared to human adipose‐derived mesenchymal stem cells. AMM implantation also augmented blood perfusion and increased intraneural vascularity. Whole‐mount fluorescent imaging analysis demonstrated that AMMs exhibited higher engraftment and endothelial incorporation abilities in the sciatic nerve. In addition, the higher expression of pro‐angiogenic factors was detected in AMMs injected into the peripheral nerve. Therefore, these data provide novel therapeutic and mechanistic insights into stem cell biology, and AMM transplantation may represent an alternative therapeutic option for treating peripheral neuropathy.  相似文献   

11.
We have previously reported that nestin‐expressing hair follicle stem cells can differentiate into neurons, Schwann cells, and other cell types. In the present study, vibrissa hair follicles, including their sensory nerve stump, were excised from transgenic mice in which the nestin promoter drives green fluorescent protein (ND‐GFP mice), and were placed in 3D histoculture supported by Gelfoam®. β‐III tubulin‐positive fibers, consisting of ND‐GFP‐expressing cells, extended up to 500 µm from the whisker nerve stump in histoculture. The growing fibers had growth cones on their tips expressing F‐actin. These findings indicate that β‐III tubulin‐positive fibers elongating from the whisker follicle sensory nerve stump were growing axons. The growing whisker sensory nerve was highly enriched in ND‐GFP cells which appeared to play a major role in its elongation and interaction with other nerves in 3D culture, including the sciatic nerve, the trigeminal nerve, and the trigeminal nerve ganglion. The results of the present report suggest a major function of the nestin‐expressing stem cells in the hair follicle is for growth of the follicle sensory nerve. J. Cell. Biochem. 114: 1674–1684, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
We have previously reported that hair follicles contain multipotent stem cells which express nestin. The nestin-expressing cells form the hair follicle sensory nerve. In vitro, the nestin-expressing hair follicle cells can differentiate into neurons, Schwann cells, and other cell types. In the present study, the sciatic nerve was excised from transgenic mice in which the nestin promoter drives green fluorescent protein (ND-GFP mice). The ND-GFP cells of the sciatic nerve were also found to be multipotent as the ND-GFP cells in the hair follicle. When the ND-GFP cells in the mouse sciatic nerve cultured on Gelfoam® and were imaged by confocal microscopy, they were observed forming fibers extending the nerve. The fibers consisted of ND-GFP-expressing spindle cells, which co-expressed the neuron marker β-III tubulin, the immature Schwann-cell marker p75NTR and TrkB which is associated with neurons. The fibers also contain nestin-negative spherical cells expressing GFAP, a Schwann-cell marker. The β-III tubulin-positive fibers had growth cones on their tips expressing F-actin, indicating they are growing axons. When the sciatic nerve from mice ubiquitously expressing red fluorescent protein (RFP) was co-cultured on Gelfoam® with the sciatic nerve from ND-GFP transgenic mice, the interaction of nerves was observed. Proliferating nestin-expressing cells in the injured sciatic nerve were also observed in vivo. Nestin-expressing cells were also observed in posterior nerves but not in the spinal cord itself, when placed in 3-D Gelfoam® culture. The results of the present report suggest a critical function of nestin-expressing cells in peripheral nerve growth and regeneration.  相似文献   

13.
Using nestin‐driven green fluorescent protein (ND‐GFP) transgenic mice, we previously demonstrated an inter‐hair‐follicle blood vessel network that expresses ND‐GFP and appears to originate from ND‐GFP expressing hair‐follicle stem cells. We report here that angiogenesis of transplanted skin or healing wounds originates from this ND‐GFP‐expressing microvasculature network. ND‐GFP‐expressing blood vessels were visualized growing from the ND‐GFP‐expressing hair‐follicle stem cell area and re‐establishing the dermal microvasculature network after skin transplantation or wound healing. When the ND‐GFP stem cell area from the vibrissa (whisker) from ND‐GFP mice was transplanted to transgenic mice ubiquitously expressing RFP, we observed chimeric ND‐GFP‐RFP blood vessels, suggesting the joining of inter‐follicular blood vessel networks from the transplant and host. These observations suggest that the inter‐hair‐follicle blood‐vessel network contributes to skin transplant survival and wound healing. J. Cell. Biochem. 110: 80–86, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
An obstacle to early stem cell transplantation into the acutely injured spinal cord is poor survival of transplanted cells. Transplantation of embryonic stem cells as substrate adherent embryonic stem cell-derived neural aggregates (SENAs) consisting mainly of neurons and radial glial cells has been shown to enhance survival of grafted cells in the injured mouse brain. In the attempt to promote the beneficial function of these SENAs, murine embryonic stem cells constitutively overexpressing the neural cell adhesion molecule L1 which favors axonal growth and survival of grafted and imperiled cells in the inhibitory environment of the adult mammalian central nervous system were differentiated into SENAs and transplanted into the spinal cord three days after compression lesion. Mice transplanted with L1 overexpressing SENAs showed improved locomotor function when compared to mice injected with wild-type SENAs. L1 overexpressing SENAs showed an increased number of surviving cells, enhanced neuronal differentiation and reduced glial differentiation after transplantation when compared to SENAs not engineered to overexpress L1. Furthermore, L1 overexpressing SENAs rescued imperiled host motoneurons and parvalbumin-positive interneurons and increased numbers of catecholaminergic nerve fibers distal to the lesion. In addition to encouraging the use of embryonic stem cells for early therapy after spinal cord injury L1 overexpression in the microenvironment of the lesioned spinal cord is a novel finding in its functions that would make it more attractive for pre-clinical studies in spinal cord regeneration and most likely other diseases of the nervous system.  相似文献   

15.
Patterns of nestin expression in human skin   总被引:7,自引:0,他引:7  
  相似文献   

16.
Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.  相似文献   

17.
The release of inflammatory mediators from immune and glial cells either in the peripheral or CNS may have an important role in the development of physiopathological processes such as neuropathic pain. Microglial, then astrocytic activation in the spinal cord, lead to chronic inflammation, alteration of neuronal physiology and neuropathic pain. Standard experimental models of neuropathic pain include an important peripheral inflammatory component, which involves prominent immune cell activation and infiltration. Among potential immunomodulators, the T‐cell cytokine interleukin‐15 (IL‐15) has a key role in regulating immune cell activation and glial reactivity after CNS injury. Here we show, using the model of chronic constriction of the sciatic nerve (CCI), that IL‐15 is essential for the development of the early inflammatory events in the spinal cord after a peripheral lesion that generates neuropathic pain. IL‐15 expression in the spinal cord was identified in both astroglial and microglial cells and was present during the initial gliotic and inflammatory (NFκB) response to injury. The expression of IL‐15 was also identified as a cue for macrophage and T‐cell activation and infiltration in the sciatic nerve, as shown by intraneural injection of the cytokine and activity blockage approaches. We conclude that the regulation of IL‐15 and hence the initial events following its expression after peripheral nerve injury could have a future therapeutic potential in the reduction of neuroinflammation.  相似文献   

18.
毛囊来源的神经嵴干细胞(Epidermal Neural Crest Stem Cell,EPI-NCSC)由于取材方便,具有多种分化潜能,是一种具有良好应用前景的组织工程种子细胞。目前,在神经损伤修复领域中,EPI-NCSC主要被应用于脊髓损伤的修复。为了探讨EPI-NCSC对周围神经缺损的修复作用,对原代培养的GFP-SD大鼠来源的EPI-NCSC的体外性质进行了考察,并以其为种子细胞,将其等量与细胞外基质(Extracellular matrix,ECM)混合后,预置入聚乳酸-聚羟基乙酸共聚物(Poly lactic acid co glycolic acid copolymer,PLGA)导管中,同时,以等量的达尔伯克(氏)改良伊格尔(氏)培养基(Dulbecco's Modified Eagle's medium,DMEM)代替EPI-NCSC作为对照,以用于修复大鼠坐骨神经10 mm距离的缺失。噻唑蓝(Methyl thiazolyl tetrazolium,MTT)比色分析结果显示,EPI-NCSC在PLGA膜上的初期粘附率为89.7%。在第1、3、5、7天细胞相对增殖率分别为89.3%、87.6%、85.6%和96.6%。细胞周期与DNA倍体分析表明,与PLGA共培养的EPI-NCSC与单独培养的EPI-NCSC相比较,二者的细胞周期变化趋势相同,增殖指数变化趋势也相同。在神经导管移植4周,术部实现了组织学水平的修复。大鼠手术一侧后肢感觉功能有所恢复,坐骨神经指数有所提高。研究结果表明,在PLGA导管中预置EPI-NCSC,有望实现较好的周围神经缺损的修复效果。  相似文献   

19.
Stem cells are promising sources for repairing damaged neurons and glial cells in neural injuries and for replacing dead cells in neurodegenerative diseases. An essential step for stem cell-based therapy is to generate large quantities of stem cells and develop reliable culture conditions to direct efficient differentiation of specific neuronal and glial subtypes. The human umbilical cord and umbilical cord blood (UCB) are rich sources of multiple stem cells, including hematopoietic stem cells, mesenchymal stem cells, unrestricted somatic stem cells, and embryonic-like stem cells. Human UC/UCB-derived cells are able to give rise to multiple cell types of neural lineages. Studies have shown that UCB and UCB-derived cells can survive in injured sites in animal models of ischemic brain damage and spinal cord injuries, and promote survival and prevent cell death of local neurons and glia. Human UCB is easy to harvest and purify. Moreover, unlike embryonic stem cells, the use of human UCB is not limited by ethical quandaries. Therefore, human UCB is an attractive source of stem cells for repairing neural injuries.  相似文献   

20.
Stem cell research has been attained a greater attention in most fields of medicine due to its potential for many incurable diseases through replacing or helping the regeneration of damaged cells or tissues. Here, we demonstrated the functional recovery and structural connection of the central nervous system pathway innervating the sciatic nerve after total transection of the spinal cord followed by the transplantation of human neural stem cells (hNSC) in the injured rat spinal cord site. The limb function of hNSC-treated group recovered dramatically compared with that in the sham group by Basso–Beattie–Bresnahan (BBB) scores. Transplanted hNSC differentiated into astrocytes and neurons in the injured site. In addition, immunohistochemistry for growth-associated protein 43 showed axonal regeneration in the injured spinal cord site. The pseudorabies viral-Ba (PRV-Ba) tracing method revealed that transplanted hNSC and their differentiated neurons showed positive labeling after sciatic nerve injection. In addition, the PRV-Ba labeling was also observed in several nuclei in the brain innervating the sciatic nerve. This result implies that the rat CNS motor pathway could be reconstructed by hNSC transplantation, and it may contribute to the functional recovery of the limb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号