首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oral squamous cell carcinoma (OSCC) may arise from potentially malignant oral lesions. All‐trans retinoic acid (atRA), which plays a role in cell growth and differentiation, has been studied as a possible chemotherapeutic agent in the prevention of this progression. While the mechanism by which atRA suppresses cell growth has not been completely elucidated, it is known that homeobox genes are atRA targets. To determine if these genes are involved in the atRA‐mediated OSCC growth inhibition, PCR array was performed to evaluate the expression of 84 homeobox genes in atRA‐sensitive SCC‐25 cells compared to atRA‐resistant SCC‐9 cells following 7 days with atRA treatment. Results showed that the expression of 8 homeobox genes was downregulated and expression of 4 was upregulated in SCC‐25 cells but not in SCC‐9 cells. Gene expression levels were confirmed for seven of these genes by RT‐qPCR. Expression of three genes that showed threefold downregulation was evaluated in SCC‐25 cells treated with atRA for 3, 5, and 7 days. Three different patterns of atRA‐dependent gene expression were observed. ALX1 showed downregulation only on day 7. DLX3 showed reduced expression on day 3 and further reduced on day 7. TLX1 showed downregulation only on days 5 and 7. Clearly the expression of homeobox genes is modulated by atRA in OSCC cell lines. However, the time course of this modulation suggests that these genes are not direct targets of atRA mediating OSCC growth suppression. Instead they appear to act as downstream effectors of atRA signaling. J. Cell. Biochem. 111: 1437–1444, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
3.
4.
Differential expression analysis has led to the identification of important biomarkers in oesophageal squamous cell carcinoma (ESCC). Despite enormous contributions, it has not harnessed the full potential of gene expression data, such as interactions among genes. Differential co‐expression analysis has emerged as an effective tool that complements differential expression analysis to provide better insight of dysregulated mechanisms and indicate key driver genes. Here, we analysed the differential co‐expression of lncRNAs and protein‐coding genes (PCGs) between normal oesophageal tissue and ESCC tissues, and constructed a lncRNA‐PCG differential co‐expression network (DCN). DCN was characterized as a scale‐free, small‐world network with modular organization. Focusing on lncRNAs, a total of 107 differential lncRNA‐PCG subnetworks were identified from the DCN by integrating both differential expression and differential co‐expression. These differential subnetworks provide a valuable source for revealing lncRNA functions and the associated dysfunctional regulatory networks in ESCC. Their consistent discrimination suggests that they may have important roles in ESCC and could serve as robust subnetwork biomarkers. In addition, two tumour suppressor genes (AL121899.1 and ELMO2), identified in the core modules, were validated by functional experiments. The proposed method can be easily used to investigate differential subnetworks of other molecules in other cancers.  相似文献   

5.
李迎迎  刘志广  王丽  袁园园  刘平  王林嵩 《遗传》2015,37(4):315-320
食管鳞癌是我国最常见的恶性肿瘤之一。由于缺乏有效的早期诊断方法,大多数食管鳞癌患者在确诊时已到中晚期并预后不良。MicroRNAs(miRNAs)是一类可通过抑制其特异性靶基因表达从而调控食管鳞癌发生发展的非编码内源性小RNA。相比于传统的生物标志物(例如mRNA和蛋白质),miRNAs更加稳定并易于筛选及精确地定量分析,从而成为理想的新一代癌症早期诊断和预后评估的生物标志物。近来的研究结果显示,食管鳞癌病人血清中的一些miRNAs表达水平的变化与病情诊断及预后的结果显著相关。文章综述了食管鳞癌病人血清中miRNAs的变化规律,讨论了检测这些miRNAs的表达水平变化作为一种新的方法应用于食管鳞癌的早期诊断和预后评估的可能性。值得注意的是,不同的血清miRNAs的检测方法所产生的结果是不完全一致的,文章还对这些差异产生的原因进行了讨论。  相似文献   

6.
7.
YAP and TAZ are key downstream regulators of the Hippo pathway, regulating cell proliferation and differentiation. YAP and TAZ activation has been reported in different cancer types. However, it remains unclear whether they are required for the initiation of major skin malignancies like basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Here, we analyze the expression of YAP and TAZ in these skin cancers and evaluate cancer initiation in knockout mouse models. We show that YAP and TAZ are nuclear and highly expressed in different BCC types in both human and mice. Further, we find that cells with nuclear YAP and TAZ localize to the invasive front in well‐differentiated SCC, whereas nuclear YAP is homogeneously expressed in spindle cell carcinoma undergoing EMT. We also show that mouse BCC and SCC are enriched for YAP gene signatures. Finally, we find that the conditional deletion of YAP and TAZ in mouse models of BCC and SCC prevents tumor formation. Thus, YAP and TAZ are key determinants of skin cancer initiation, suggesting that targeting the YAP and TAZ signaling pathway might be beneficial for the treatment of skin cancers.  相似文献   

8.
9.
10.
口腔鳞状细胞癌(OSCC)是口腔颌面部恶性肿瘤中最主要的一类,约占80%以上,好发于男性,但近年来女性的发病率也呈现逐年增加的趋势;microRNA,是一类稳定的短序列非编码RNA,其主要功能是在转录后水平参与靶基因的调控,近来研究已发现在OSCC患者中存在许多异常表达的microRNAs,而这些分子在OSAS的发生发展中扮演着重要的角色,异常的microRNA同样对OSCC的临床诊断、治疗以及判断预后都有着重要的作用;本文对当前microRNA在OSCC中的的异常表达、作用机制以及作为诊断标记物、治疗靶点的潜能进行了综述。  相似文献   

11.
Circular RNAs (circRNAs) function as an essential regulator in the progression of oral squamous cell carcinoma (OSCC). However, the potential roles and mechanism of circRNAs in OSCC are still elusive. Here, this research investigates the roles and molecular mechanism of novel circRNA (circMDM2) in OSCC progression. Clinically, circMDM2 was overexpressed in OSCC tissue and cells, and the overexpression served as a poor prognostic factor for OSCC patients. Functionally, cellular experiments confirmed that circMDM2 accelerated OSCC cell proliferation and glycolysis in vitro and circMDM2 knockdown repressed the tumour growth in vivo. Mechanistically, circMDM2 sponged miR‐532‐3p to promote the hexokinase 2 (HK2), forming the circMDM2/miR‐532‐3p/HK2 axis. In conclusion, these findings demonstrated that circMDM2/miR‐532‐3p/HK2 axis promotes the proliferation and glycolysis of OSCC, rendering a potential diagnostic biomarker and prospective therapeutic target for OSCC.  相似文献   

12.
CD147/basigin (BSG) is highly upregulated in many types of cancer, our previous study has found that CD147/BSG is highly expressed in head and neck squamous cell carcinoma (HNSCC) stem cells, but its role in HNSCC and the underlying mechanism is still unknown. In this study, we investigated the role of CD147 in the progression of HNSCC. Real‐time PCR, western blot and immunohistochemistry were used to detect the expression of CD147 in total 189 HNSCC tissues in compared with normal tissues. In addition, we used proliferation, colony formation, cell cycle and apoptosis, migration and invasion as well as wound‐healing assay to determine the biological roles of CD147 in HNSCC. Then, a xenograft model was performed to evaluate tumor‐promoting and metastasis‐promoting role of CD147 in HNSCC. The results showed that upregulated CD147 expression was associated with aggressive clinicopathologic features in HNSCC. In addition, CD147 promoted proliferation, migration and reduced the apoptosis phenotype of HNSCC cells in vitro as well as tumor initiation and progression in vivo. Furthermore, we demonstrated that CD147 promoted HNSCC progression through nuclear factor kappa B signaling. Therefore, we concluded that CD147 promoted tumor progression in HNSCC and might be a potential prognostic and treatment biomarker for HNSCC.  相似文献   

13.
5‐Fluorouracil (5‐FU) is a chemotherapeutic agent used to treat a variety of gastric cancers including oesophageal squamous cell carcinoma (OSCC), for which the 5‐year mortality rate exceeds 85%. Our study investigated the effects of metformin, an antidiabetic drug with established anti‐cancer activity, in combination with 5‐FU as a novel chemotherapy strategy, using the OSCC cell lines, WHCO1 and WHCO5. Our results indicate that metformin treatment induces significant resistance to 5‐FU in WHCO1 and WHCO5 cells, by more than five‐ and sixfolds, respectively, as assessed by MTT assay. We show that this is due to global alterations in nucleotide metabolism, including elevated expression of thymidylate synthase and thymidine kinase 1 (established 5‐FU resistance mechanisms), which likely result in an increase in intracellular dTTP pools and a “dilution” of 5‐FU anabolites. Metformin treatment also increases deoxycytidine kinase (dCK) expression and, as the chemotherapeutic agent gemcitabine relies on dCK for its efficient activity, we speculated that metformin would enhance the sensitivity of OSCC cells to gemcitabine. Indeed we show that metformin pre‐treatment greatly increases gemcitabine toxicity and DNA fragmentation in comparison to gemcitabine alone. Taken together, our findings show that metformin alters nucleotide metabolism in OSCC cells and while responsible for inducing resistance to 5‐FU, it conversely increases sensitivity to gemcitabine, thereby highlighting metformin and gemcitabine as a potentially novel combination therapy for OSCC.  相似文献   

14.
15.
Cadherins are cell adhesion molecules that modulate the epithelial phenotype and regulate tumor invasion. To identify the role of promoter methylation in regulating E-cadherin expression and in the "switching" of cadherins in oral squamous cell carcinoma (SCC), we studied 14 cell lines for cadherin expression. Immunoblotting revealed that only two (HOC-313 and HA-376) showed strong up-regulation of N-cadherin, and neither expressed E-cadherin. These results were confirmed by PCR. Furthermore, analysis of genomic DNA showed that the lack of E-cadherin expression in the two cell lines was not due to gene deletion. In both cell lines, methylation-specific PCR indicated extensive methylation of the 5' CpG island in the E-cadherin promoter. After treatment with a DNA methylation inhibitor (5-Aza-2-deoxycytidine), both immunoblotting and immunofluorescence staining showed that HA-376 cells newly expressed E-cadherin with a parallel decrease in their N-cadherin expression. Multiplex RT-PCR demonstrated that the down-regulation of N-cadherin mRNA was coordinately regulated with E-cadherin expression. Thus, methylation of the 5' CpG island in the E-cadherin promoter induces reciprocal expression of E- and N-cadherins in oral SCC by an unknown mechanism that appears to be mediated at the level of N-cadherin gene expression. These events may play an important role in the regulation of tumor cell mobility and invasion.  相似文献   

16.
Abstract

The development of oral squamous cell carcinoma (OSCC) occasionally follows the neoplastic progression of other premalignant lesions. Although biopsy is the definitive diagnostic method, liquid-based cytology is an adequate method for screening suspicious lesions. We compared liquid-based cytology to histology for diagnosis of OSCC in patients with oral lesions that raised clinical suspicion of malignancy. Our sample consisted of 48 patients. Cytological samples were obtained by scraping the lesion superficially using Cytobrush®. We conducted cytological and histopathological evaluation of all preparations. We estimated sensitivity and specificity levels as well as positive and negative predictive values. The degree of inter-observer agreement for both methods was assessed using the kappa index. Twenty-eight (58.3%) of the cases finally were diagnosed with OSCC and 20 (41.7%) were determined to be premalignant lesions. We observed eight false negatives and no false positives; OSCC prevalence was 56.5%. The values for diagnostic indices were: sensitivity, 69% (CI 95%, prevalence 51.87); specificity, 100%; positive predictive value, 100%; negative predictive value, 71% (CI 95% 54.82). A kappa index of 0.622 (CI 95% 0.93, 0.39) was observed.  相似文献   

17.
ObjectivesTargeting the deubiquitinases (DUBs) has become a promising avenue for anti‐cancer drug development. However, the effect and mechanism of pan‐DUB inhibitor, PR‐619, on oesophageal squamous cell carcinoma (ESCC) cells remain to be investigated.Materials and MethodsThe effect of PR‐619 on ESCC cell growth and cell cycle was evaluated by CCK‐8 and PI staining. Annexin V‐FITC/PI double staining was performed to detect apoptosis. LC3 immunofluorescence and acridine orange staining were applied to examine autophagy. Intercellular Ca2+ concentration was monitored by Fluo‐3AM fluorescence. The accumulation of ubi‐proteins and the expression of the endoplasmic reticulum (ER) stress‐related protein and CaMKKβ‐AMPK signalling were determined by immunoblotting.ResultsPR‐619 could inhibit ESCC cell growth and induce G2/M cell cycle arrest by downregulating cyclin B1 and upregulating p21. Meanwhile, PR‐619 led to the accumulation of ubiquitylated proteins, induced ER stress and triggered apoptosis by the ATF4‐Noxa axis. Moreover, the ER stress increased cytoplasmic Ca2+ and then stimulated autophagy through Ca2+‐CaMKKβ‐AMPK signalling pathway. Ubiquitin E1 inhibitor, PYR‐41, could reduce the accumulation of ubi‐proteins and alleviate ER stress, G2/M cell cycle arrest, apoptosis and autophagy in PR‐619‐treated ESCC cells. Furthermore, blocking autophagy by chloroquine or bafilomycin A1 enhanced the cell growth inhibition effect and apoptosis induced by PR‐619.ConclusionsOur findings reveal an unrecognized mechanism for the cytotoxic effects of general DUBs inhibitor (PR‐619) and imply that targeting DUBs may be a potential anti‐ESCC strategy.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号