首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Integrins mediate cell adhesion, migration, and survival by connecting intracellular machinery with the surrounding extracellular matrix. Previous studies demonstrated the importance of the interaction between β(3) integrin and VEGF type 2 receptor (VEGFR2) in VEGF-induced angiogenesis. Here we present in vitro evidence of the direct association between the cytoplasmic tails (CTs) of β(3) and VEGFR2. Specifically, the membrane-proximal motif around (801)YLSI in VEGFR2 mediates its binding to non-phosphorylated β(3)CT, accommodating an α-helical turn in integrin bound conformation. We also show that Y(747) phosphorylation of β(3) enhances the above interaction. To demonstrate the importance of β(3) phosphorylation in endothelial cell functions, we synthesized β(3)CT-mimicking Y(747) phosphorylated and unphosphorylated membrane permeable peptides. We show that a peptide containing phospho-Y(747) but not F(747) significantly inhibits VEGF-induced signaling and angiogenesis. Moreover, phospho-Y(747) peptide exhibits inhibitory effect only in WT but not in β(3) integrin knock-out or β(3) integrin knock-in cells expressing β(3) with two tyrosines substituted for phenylalanines, demonstrating its specificity. Importantly, these peptides have no effect on fibroblast growth factor receptor signaling. Collectively these data provide novel mechanistic insights into phosphorylation dependent cross-talk between integrin and VEGFR2.  相似文献   

2.
Pleiotrophin (PTN) is a heparin-binding growth factor that plays a significant role in tumor growth and angiogenesis. We have previously shown that in order for PTN to induce migration of endothelial cells, binding to both α(ν) β(3) integrin and its receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) is required. In the present study we show that a synthetic peptide corresponding to the last 25 amino acids of the C-terminal region of PTN (PTN(112-136) ) inhibited angiogenesis in the in vivo chicken embryo chorioallantoic membrane (CAM) assay and PTN-induced migration and tube formation of human endothelial cells in vitro. PTN(112-136) inhibited binding of PTN to α(ν) β(3) integrin, and as shown by surface plasmon resonance (SPR) measurements, specifically interacted with the specificity loop of the extracellular domain of β(3) . Moreover, it abolished PTN-induced FAK Y397 phosphorylation, similarly to the effect of a neutralizing α(ν) β(3) -selective antibody. PTN(112-136) did not affect binding of PTN to RPTPβ/ζ in endothelial cells and induced β(3) Y773 phosphorylation and ERK1/2 activation to a similar extent with PTN. This effect was inhibited by down-regulation of RPTPβ/ζ by siRNA or by c-src inhibition, suggesting that PTN(112-136) may interact with RPTPβ/ζ. NMR spectroscopy studies showed that PTN(112-136) was characterized by conformational flexibility and absence of any element of secondary structure at room temperature, although the biologically active peptide segment 123-132 may adopt a defined structure at lower temperature. Collectively, our data suggest that although PTN(112-136) induces some of the signaling pathways triggered by PTN, it inhibits PTN-induced angiogenic activities through inhibition of PTN binding to α(ν) β(3) integrin.  相似文献   

3.
Integrins, transmembrane glycoprotein receptors, play vital roles in pathological angiogenesis, but their precise regulatory functions are not completely understood and remain controversial. This study aims to assess the regulatory functions of individual beta subunits of endothelial integrins in angiogenic responses induced by vascular endothelial growth factor (VEGF). Inhibition of expression of β1, β3, or β5 integrins in endothelial cells resulted in down regulation of EC adhesion and migration on the primary ligand for the corresponding integrin receptor, while no effects on the recognition of other ligands were detected. Although inhibition of expression of each subunit substantially affected capillary growth stimulated by VEGF, the loss of β3 integrin was the most inhibitory. EC stimulation by VEGF induced formation of the high affinity (activated) state of αVβ3 in a monolayer and activated αVβ3 was co-localized with VEGF receptor-2 (VEGFR-2). Inhibition of expression of β1, β3, or β5 did not affect expression levels of VEGFR-2 in EC. However, inhibition of β3, but not β1 or β5, resulted in substantial inhibition of VEGFR-2 phosphorylation stimulated by VEGF. Exogenous stimulation of αVβ3 integrin with activating antibodies augmented VEGF-dependent phosphorylation of VEGFR-2, whereas integrin blockade suppressed this response. Most importantly, activated αVβ3 was detected on endothelial cells of tumor vasculature. Activation of αVβ3 was substantially increased in highly-vascularized tumors as compared to normal tissues. Moreover, activated αVβ3 was co-localized with VEGFR-2 on endothelial cells of proliferating blood vessels. Together, these results show the unique role of αVβ3 integrin in cross-talk with VEGFR-2 in the context of pathological angiogenesis.  相似文献   

4.
Tumor malignancy is associated with several features such as proliferation ability and frequency of metastasis. Osteopontin (OPN), which abundantly expressed in bone matrix, is involved in cell adhesion, migration, invasion and proliferation via interaction with its receptor, that is, αvβ3 integrin. However, the effect of OPN on migration activity in human chondrosarcoma cells is mostly unknown. Here we found that OPN increased the migration and expression of matrix metalloproteinase (MMP)‐9 in human chondrosarcoma cells (JJ012 cells). RGD peptide, αvβ3 monoclonal antibody and MAPK kinase (MEK) inhibitors (PD98059 and U0126) but not RAD peptide inhibited the OPN‐induced increase of the migration and MMP‐9 up‐regulation of chondrosarcoma cells. OPN stimulation increased the phosphorylation of focal adhesion kinase (FAK), MEK and extracellular signal‐regulated kinase (ERK). In addition, treatment of JJ012 cells with NF‐κB inhibitor (PDTC) or IκB protease inhibitor (TPCK) inhibited OPN‐induced cell migration and MMP‐9 up‐regulation. Stimulation of JJ012 cells with OPN also induced IκB kinase α/β (IKK α/β) phosphorylation, IκBα phosphorylation, p65 Ser536 phosphorylation, and κB‐luciferase activity. The OPN‐mediated increases in MMP‐9 and κB‐luciferase activities were inhibited by RGD peptide, PD98059 or FAK and ERK2 mutant. Taken together, our results indicated that OPN enhances the migration of chondrosarcoma cells by increasing MMP‐9 expression through the αvβ3 integrin, FAK, MEK, ERK and NF‐κB signal transduction pathway. J. Cell. Physiol. 221: 98–108, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

5.
The growth of new blood vessels by angiogenesis and their stabilization by the recruitment of perivascular mural cells are thought to be two sequential, yet independent events. Here we identify molecular links between both processes through the βPix and integrin α(v)β(8) proteins. Bubblehead (bbh) mutants with a genetic mutation in βPix show defective vascular stabilization. βPix is a guanine nucleotide exchange factor and scaffold protein that binds many proteins including Git1, which bridges βPix to integrins at focal adhesions. Here we show that the ability of βPix to stabilize vessels requires Git1 binding residues. Knockdown of Git1 leads to a hemorrhage phenotype similar to loss of integrin α(v), integrin β(8) or βPix, suggesting that vascular stabilization through βPix involves interactions with integrins. Furthermore, double loss of function of βPix and integrin α(v) shows enhanced hemorrhage rates. Not only is vascular stability impaired in these embryos, but we also uncover a novel role of both βPix and integrin α(v)β(8) in cerebral angiogenesis. Downregulation of either βPix or integrin α(v)β(8) results in fewer and morphologically abnormal cerebral arteries penetrating the hindbrain. We show that this is coupled with a significant reduction in endothelial cell proliferation in bbh mutants or integrin α(v)β(8) morphants. These data suggest that a complex involving βPix, GIT1 and integrin α(v)β(8) may regulate vascular stability, cerebral angiogenesis and endothelial cell proliferation in the developing embryo.  相似文献   

6.
7.
The angiogenic inducer CCN1 (cysteine-rich 61, CYR61), a secreted matricellular protein of the CCN family, is a ligand of multiple integrins, including alpha 6 beta 1. Previous studies have shown that CCN1 interaction with integrin alpha 6 beta 1 mediates adhesion of fibroblasts, endothelial cells, and smooth muscle cells, as well as migration of smooth muscle cells. Recently, we have reported that CCN1-induced tubule formation of unactivated endothelial cells is also mediated through integrin alpha 6 beta 1. In this study, we demonstrate that human skin fibroblasts adhere specifically to the T1 sequence (GQKCIVQTTSWSQCSKS) within domain III of CCN1, and this process is blocked by anti-alpha 6 and anti-beta 1 monoclonal antibodies. Alanine substitution mutagenesis of the T1 sequence further defines the sequence TTSWSQCSKS as the critical determinant for mediating alpha 6 beta 1-dependent adhesion. Soluble T1 peptide specifically inhibits fibroblast adhesion to CCN1 in a dose-dependent manner. Furthermore, T1 also inhibits cell adhesion to other alpha 6 beta 1 ligands, including CCN2 (CTGF), CCN3 (NOV), and laminin, but not to ligands of other integrins. In addition, T1 specifically inhibits alpha 6 beta 1-dependent tubule formation of unactivated endothelial cells in a CCN1-containing collagen gel matrix. To confirm that T1 binds integrin alpha 6 beta 1 directly, we perform affinity chromatography and show that integrin alpha 6 beta 1 is isolated from an octylglucoside extract of fibroblasts on T1-coupled Affi-gel. Taken together, these findings define the T1 sequence in CCN1 as a novel binding motif for integrin alpha 6 beta 1, providing the basis for the development of peptide mimetics to examine the functional role of alpha 6 beta 1 in angiogenesis.  相似文献   

8.
Brain‐derived neurotrophic factor (BDNF) promotes the regeneration of periodontal tissue. Since angiogenesis is important for tissue regeneration, investigating effect of BDNF on endothelial cell function may help to reveal its mechanism, whereby, BDNF promotes periodontal tissue regeneration. In this study, we examined the influence of BDNF on migration in human microvascular endothelial cells (HMVECs), focusing on the effects on extracellular signal‐regulated kinase (ERK), integrin αVβ3, and focal adhesion kinase (FAK). The migration of endothelial cells was assessed with a modified Boyden chamber and a wound healing assay. The expression of integrin αVβ3 and the phosphorylation of ERK and FAK were analyzed by immunoblotting and immunofluorescence microscopy. BDNF (25 ng/ml) induced cell migration. PD98059, an ERK inhibitor, K252a, a specific inhibitor for TrkB, a high affinity receptor of BDNF, and an anti‐integrin αVβ3 antibody suppressed the BDNF‐induced migration. BDNF increased the levels of integrin αVβ3 and phosphorylated ERK1/2 and FAK. The ERK inhibitor and TrkB inhibitor also reduced levels of integrin αVβ3 and phosphorylated FAK. We propose that BDNF stimulates endothelial cell migration by a process involving TrkB/ERK/integrin αVβ3/FAK, and this may help to enhance the regeneration of periodontal tissue. J. Cell. Physiol. 227: 2123–2129, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
Kaposi's Sarcoma (KS), the most common tumor of AIDS patients, is a highly vascularized tumor supporting large amounts of angiogenesis. The main cell type of KS tumors is the spindle cell, a cell of endothelial origin, the primary cell type involved in angiogenesis. Kaposi's Sarcoma-associated herpesvirus (KSHV) is the etiologic agent of KS and is likely involved in both tumor formation and the induction of angiogenesis. Integrins, and specifically integrin αVβ3, have known roles in both tumor induction and angiogenesis. αVβ3 is also important for KSHV infection as it has been shown to be involved in KSHV entry into cells. We found that during latent infection of endothelial cells KSHV induces the expression of integrin β3 leading to increased surface levels of αVβ3. Signaling molecules downstream of integrins, including FAK and Src, are activated during viral latency. Integrin activation by KSHV is necessary for the KSHV-associated upregulation of a number of angiogenic phenotypes during latent infection including adhesion and motility. Additionally, KSHV-infected cells become more reliant on αVβ3 for capillary like formation in three dimensional culture. KSHV induction of integrin β3, leading to induction of angiogenic and cancer cell phenotypes during latency, is likely to be important for KS tumor formation and potentially provides a novel target for treating KS tumors.  相似文献   

10.
The bidirectional communication between integrin αvβ3 and vascular endothelial growth factor (VEGF) receptors acts to integrate and coordinate endothelial cell (EC) activity during angiogenesis. However, the molecular mechanisms involved in this signaling crosstalk are only partially revealed. We have found that protein kinase D1 (PKD1) was activated by VEGF‐A, but not by other angiogenic factors, and associated with αvβ3 integrin. Moreover, knockdown of PKD1 increased endocytosis of αvβ3 and reduced its return from endosomes to the plasma membrane leading to accumulation of the integrin in Rab5‐ and Rab4‐positive endosomes. Consistent with this, PKD1 knockdown caused defects in focal complex formation and reduced EC migration in response to VEGF‐A. Moreover, knockdown of PKD1 reduced EC motility on vitronectin, whereas migration on collagen I was not PKD1 dependent. These results suggest that PKD1‐regulated αvβ3 trafficking contributes to the angiogenesis process by integrating VEGF‐A signaling with extracellular matrix interactions.  相似文献   

11.
Nitric oxide (NO) mediates endothelial angiogenesis via inducing the expression of integrin α(v)β(3). During angiogenesis, endothelial cells adhere to and migrate into the extracellular matrix through integrins. Collagen IV binds to integrin α(v)β(3), leading to integrin activation, which affects a number of signaling processes in endothelial cells. In the present study, we evaluated the role of collagen IV in NO-induced angiogenesis. We found that NO donor 2,2'-(hydroxynitrosohydrazino)bis-ethanamine (NOC-18) causes increases in collagen IV mRNA and protein in lung endothelial cells and collagen IV release into the medium. Addition of collagen IV into the coating of endothelial culture increases endothelial monolayer wound repair, proliferation, and tube formation. Inhibition of collagen IV synthesis using gene silencing attenuates NOC-18-induced increases in monolayer wound repair, cell proliferation, and tube formation as well as in the phosphorylation of focal adhesion kinase (FAK). Integrin blocking antibody LM609 prevents NOC-18-induced increase in endothelial monolayer wound repair. Inhibition of protein kinase G (PKG) using the specific PKG inhibitor KT5823 or PKG small interfering RNA prevents NOC-18-induced increases in collagen IV protein and mRNA and endothelial angiogenesis. Together, these results indicate that NO promotes collagen IV synthesis via a PKG signaling pathway and that the increase in collagen IV synthesis contributes to NO-induced angiogenesis of lung endothelial cells through integrin-FAK signaling. Manipulation of collagen IV could be a novel approach for the prevention and treatment of diseases such as alveolar capillary dysplasia, severe pulmonary arterial hypertension, and tumor invasion.  相似文献   

12.
Dauricine, a bioactive component of Asiatic Moonseed Rhizome, has been widely used to treat a large number of inflammatory diseases in traditional Chinese medicine. In our study, we demonstrated that dauricine inhibited colon cancer cell proliferation and invasion, and induced apoptosis by suppressing nuclear factor‐kappaB (NF‐κB) activation in a dose‐ and time‐dependent manner. Addition of dauricine inhibited the phosphorylation and degradation of IκBα, and the phosphorylation and translocation of p65. Moreover, dauricine down‐regulated the expression of various NF‐κB‐regulated genes, including genes involved cell proliferation (cyclinD1, COX2, and c‐Myc), anti‐apoptosis (survivin, Bcl‐2, XIAP, and IAP1), invasion (MMP‐9 and ICAM‐1), and angiogenesis (VEGF). In athymic nu/nu mouse model, we further demonstrated that dauricine significantly suppressed colonic tumor growth. Taken together, our results demonstrated that dauricine inhibited colon cancer cell proliferation, invasion, and induced cell apoptosis by suppressing NF‐κB activity and the expression profile of its downstream genes. These findings provide evidence for a novel role of dauricine in preventing or treating colon cancer through modulation of NF‐κB singling pathway. J. Cell. Physiol. 225: 266–275, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Chronic inflammation is tightly linked to diseases associated with endothelial dysfunction including aberrant angiogenesis. To better understand the endothelial role in pro‐inflammatory angiogenesis, we analyzed signaling pathways in continuously activated endothelial cells, which were either chronically exposed to soluble TNF or the reactive oxygen species (ROS) generating H2O2, or express active transmembrane TNF. Testing in an in vitro capillary sprout formation assay, continuous endothelial activation increased angiogenesis dependent on activation of p38 MAP kinase, NADPH oxidase, and matrix metalloproteinases (MMP). p38 MAP kinase‐ and MMP‐9‐dependent angiogenesis in our assay system may be part of a positive feed forward autocrine loop because continuously activated endothelial cells displayed up‐regulated ROS production and subsequent endothelial TNF expression. The pro‐angiogenic role of the p38 MAP kinase in continuously activated endothelial cells was in stark contrast to the anti‐angiogenic activity of the p38 MAP kinase in unstimulated control endothelial cells. In vivo, using an experimental prostate tumor, pharmacological inhibition of p38 MAP kinase demonstrated a significant reduction in tumor growth and in vessel density, suggesting a pro‐angiogenic role of the p38 MAP kinase in pathological angiogenesis in vivo. In conclusion, our results suggest that continuous activation of endothelial cells can cause a switch of the p38 MAP kinase from anti‐angiogenic to pro‐angiogenic activities in conditions which link oxidative stress and autocrine TNF production. J. Cell. Physiol. 226: 800–808, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Although angiogenesis is viewed as a fundamental component of inflammatory bowel disease (IBD) pathogenesis, we presently lack a thorough knowledge of the cell type(s) involved in its induction and maintenance in the inflamed intestinal mucosa. This study aimed to determine whether platelet (PLT) adhesion to inflamed intestinal endothelial cells of human origin may favour angiogenesis. Unstimulated or thrombin‐activated human PLT were overlaid on resting or tumour necrosis factor (TNF)‐α‐treated human intestinal microvascular endothelial cells (HIMEC), in the presence or absence of blocking antibodies to either vascular cell adhesion molecule (VCAM)‐1, intercellular adhesion molecule (ICAM)‐1, integrin αvβ3, tissue factor (TF) or fractalkine (FKN). PLT adhesion to HIMEC was evaluated by fluorescence microscopy, and release of angiogenic factors (VEGF and soluble CD40L) was measured by ELISA. A matrigel tubule formation assay was used to estimate PLT capacity to induce angiogenesis after co‐culturing with HIMEC. TNF‐α up‐regulated ICAM‐1, αvβ3 and FKN expression on HIMEC. When thrombin‐activated PLT were co‐cultured with unstimulated HIMEC, PLT adhesion increased significantly, and this response was further enhanced by HIMEC activation with TNF‐α. PLT adhesion to HIMEC was VCAM‐1 and TF independent but ICAM‐1, FKN and integrin αvβ3 dependent. VEGF and sCD40L were undetectable in HIMEC cultures either before or after TNF‐α stimulation. By contrast, VEGF and sCD40L release significantly increased when resting or activated PLT were co‐cultured with TNF‐α‐pre‐treated HIMEC. These effects were much more pronounced when PLT were derived from IBD patients. Importantly, thrombin‐activated PLT promoted tubule formation in HIMEC, a functional estimate of their angiogenic potential. In conclusion, PLT adhesion to TNF‐α‐pre‐treated HIMEC is mediated by ICAM‐1, FKN and αvβ3, and is associated with VEGF and sCD40L release. These findings suggest that inflamed HIMEC may recruit PLT which, upon release of pro‐angiogenic factors, actively contribute to inflammation‐induced angiogenesis.  相似文献   

15.
Vascular basement membrane-derived multifunctional peptide(VBMDMP)gene(fusion geneof the human immunoglobulin G3 upper hinge region and two tumstatin-derived fragments)obtained bychemical synthesis was cloned into vector pUC19,and introduced into the expression vector pGEX-4T-1 toconstruct a prokaryotic expression vector pGEX-4T-1-VBMDMP.Recombinant VBMDMP produced inEscherichia coli has been shown to have significant activity of antitumor growth and antimetastasis inLewis lung carcinoma transplanted into mouse C57B1/6.In the present study,we have studied the ability ofrVBMDMP to inhibit endothelial cell tube formation and proliferation,to induce apoptosis in vitro,and tosuppress tumor growth in vivo.The experimental results showed that rVBMDMP potently inhibited prolif-eration of human endothelial(HUVEC-12)cells and human colon cancer(SW480)cells in vitro,with noinhibition of proliferation in Chinese hamster ovary(CHO-K1)cells.rVBMDMP also significantly inhibitedhuman endothelial cell tube formation and suppressed tumor growth of SW480 cells in a mouse xenograftmodel.These results suggest that rVBMDMP is a powerful therapeutic agent for suppressing angiogenesisand tumor growth.  相似文献   

16.
P11, a novel peptide ligand containing a PDZ-binding motif (Ser-Asp-Val) with high affinity to integrin α(v)β(3) was identified from a hexapeptide library (PS-SPCL) using a protein microarray chip-based screening system. Here, we investigated the inhibitory mechanism of P11 (HSDVHK) on tumor-induced angiogenesis via a pharmacoproteomic approach. P11 was rapidly internalized by, human umbilical vein endothelial cells (HUVECs) via an integrin α(v)β(3)-mediated event. Caveolin and clathrin appeared to be involved in the P11 uptake process. The cell-penetrating P11 resulted in suppression of bFGF-induced HUVEC proliferation in a dose-dependent manner. Phosphorylation of extracellular-signal regulated kinase (ERK1/2) and mitogen-activated protein kinase kinase (MEK) in bFGF-stimulated HUVECs was inhibited by cell-permeable P11. Proteomic analysis via antibody microarray showed up-regulation of p53 in P11-treated HUVECs, resulting in induction of apoptosis via activation of caspases-3, -8, and -9. Several lines of experimental evidence strongly suggest that the molecular mechanism of P11, a novel anti-angiogenic agent, inhibits bFGF-induced HUVEC proliferation via mitogen-activated protein kinase kinase and extracellular-signal regulated kinase inhibition as well as p53-mediated apoptosis related with activation of caspases.  相似文献   

17.
The recruitment of tissue‐resident stem cells is important for wound regeneration. Periodontal ligament cells (PDL cells) are heterogeneous cell populations with stemness features that migrate into wound sites to regenerate periodontal fibres and neighbouring hard tissues. Cell migration is regulated by the local microenvironment, coordinated by growth factors and the extracellular matrix (ECM). Integrin‐mediated cell adhesion to the ECM provides essential signals for migration. We hypothesized that PDL cell migration could be enhanced by selective expression of integrins. The migration of primary cultured PDL cells was induced by platelet‐derived growth factor‐BB (PDGF‐BB). The effects of blocking specific integrins on migration and ECM adhesion were investigated based on the integrin expression profiles observed during migration. Up‐regulation of integrins α3, α5, and fibronectin was identified at distinct localizations in migrating PDL cells. Treatment with anti‐integrin α5 antibodies inhibited PDL cell migration. Treatment with anti‐integrin α3, α3‐blocking peptide, and α3 siRNA significantly enhanced cell migration, comparable to treatment with PDGF‐BB. Furthermore, integrin α3 inhibition preferentially enhanced adhesion to fibronectin via integrin α5. These findings indicate that PDL cell migration is reciprocally regulated by integrin α3‐mediated inhibition and α5‐mediated promotion. Thus, targeting integrin expression is a possible therapeutic strategy for periodontal regeneration.  相似文献   

18.
Das M  Ithychanda SS  Qin J  Plow EF 《PloS one》2011,6(10):e26355
Cell adhesion and migration depend on engagement of extracellular matrix ligands by integrins. Integrin activation is dynamically regulated by interactions of various cytoplasmic proteins, such as filamin and integrin activators, talin and kindlin, with the cytoplasmic tail of the integrin β subunit. Although filamin has been suggested to be an inhibitor of integrin activation, direct functional evidence for the inhibitory role of filamin is limited. Migfilin, a filamin-binding protein enriched at cell-cell and cell-extracellular matrix contact sites, can displace filamin from β1 and β3 integrins and promote integrin activation. However, its role in activation and functions of different β integrins in human vascular cells is unknown. In this study, using flow cytometry, we demonstrate that filamin inhibits β1 and αIIbβ3 integrin activation, and migfilin can overcome its inhibitory effect. Migfilin protein is widely expressed in different adherent and circulating blood cells and can regulate integrin activation in naturally-occurring vascular cells, endothelial cells and neutrophils. Migfilin can activate β1, β2 and β3 integrins and promote integrin mediated responses while migfilin depletion impairs the spreading and migration of endothelial cells. Thus, filamin can act broadly as an inhibitor and migfilin is a promoter of integrin activation.  相似文献   

19.
Thrombospondin-1 (TSP1) can inhibit angiogenesis by interacting with endothelial cell CD36 or proteoglycan receptors. We have now identified alpha3beta1 integrin as an additional receptor for TSP1 that modulates angiogenesis and the in vitro behavior of endothelial cells. Recognition of TSP1 and an alpha3beta1 integrin-binding peptide from TSP1 by normal endothelial cells is induced after loss of cell-cell contact or ligation of CD98. Although confluent endothelial cells do not spread on a TSP1 substrate, alpha3beta1 integrin mediates efficient spreading on TSP1 substrates of endothelial cells deprived of cell-cell contact or vascular endothelial cadherin signaling. Activation of this integrin is independent of proliferation, but ligation of the alpha3beta1 integrin modulates endothelial cell proliferation. In solution, both intact TSP1 and the alpha3beta1 integrin-binding peptide from TSP1 inhibit proliferation of sparse endothelial cell cultures independent of their CD36 expression. However, TSP1 or the same peptide immobilized on the substratum promotes their proliferation. The TSP1 peptide, when added in solution, specifically inhibits endothelial cell migration and inhibits angiogenesis in the chick chorioallantoic membrane, whereas a fragment of TSP1 containing this sequence stimulates angiogenesis. Therefore, recognition of immobilized TSP1 by alpha3beta1 integrin may stimulate endothelial cell proliferation and angiogenesis. Peptides that inhibit this interaction are a novel class of angiogenesis inhibitors.  相似文献   

20.
It is known that VEGF receptors (VEGFR) and integrins interact with each other to regulate angiogenesis. We reported previously that the fasciclin 1 (FAS1) domain-containing protein, TGFBIp/βig-h3 (TGF-β-induced protein) is an angiogenesis regulator that inhibits both endothelial cell migration and growth via αvβ3 integrin. In an attempt to target the interaction between VEGFR-2 and αvβ3 integrin, we determined whether the FAS1 domain region of TGFBIp/βig-h3 (FAS1 domain protein) can block the interaction between the two receptors, leading to the suppression of angiogenesis. In this study, we showed that FAS1 domain protein inhibits VEGF(165)-induced endothelial cell proliferation and migration via αvβ3 integrin, resulting in the inhibition of VEGF(165)-induced angiogenesis. We also defined a molecular mechanism by which FAS1 domain protein blocks the association between αvβ3 integrin and VEGFR-2, showing that it binds to αvβ3 integrin but not to VEGFR-2. Blocking the association of these major angiogenic receptors with FAS1 domain protein inhibits signaling pathways downstream of VEGFR-2. Collectively, our results indicate that FAS1 domain protein, in addition to its inhibitory effect on αvβ3 integrin-mediated angiogenesis, also inhibits VEGF(165)-induced angiogenesis. Thus, FAS1 domain protein can be further developed into a potent anticancer drug that targets two principal angiogenic pathways. Mol Cancer Res; 10(8); 1010-20. ?2012 AACR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号