首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Msx and Dlx families of homeobox proteins are important regulators for embryogenesis. Loss of Msx1 in mice results in multiple developmental defects including craniofacial malformations. Although Dlx5 is widely expressed during embryonic development, targeted null mutation of Dlx5 mainly affects the development of craniofacial bones. Msx1 and Dlx5 show overlapping expression patterns during frontal bone development. To investigate the functional significance of Msx1/Dlx5 interaction in regulating frontal bone development, we generated Msx1 and Dlx5 double null mutant mice. In Msx1?/?;Dlx5?/? mice, the frontal bones defect was more severe than that of either Msx1?/? or Dlx5?/? mice. This aggravated frontal bone defect suggests that Msx1 and Dlx5 function synergistically to regulate osteogenesis. This synergistic effect of Msx1 and Dlx5 on the frontal bone represents a tissue specific mode of interaction of the Msx and Dlx genes. Furthermore, Dlx5 requires Msx1 for its expression in the context of frontal bone development. Our study shows that Msx1/Dlx5 interaction is crucial for osteogenic induction during frontal bone development. genesis 48:645–655, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
3.
The Dlx genes play an important role in the development of the pharyngeal arches and the structures derived from these tissues, including the craniofacial skeleton. They are typically expressed in a nested pattern along the proximo‐distal axis of the branchial arches in mice. This pattern is known as the “Dlx code” and has been proposed to be responsible for an early regional patterning of branchial arches in mammals. A number of cis‐ regulatory elements (CREs) have been identified within the Dlx loci, which target reporter expression to the developing pharyngeal arches of the mouse. Most of these CREs are located in the intergenic regions between the two genes constituting a Dlx bigene cluster. Therefore, the regionalized dlx expression in the branchial arches could be the result of the shared activities of these regulatory regions. Here we analyze previously published and new results showing these CREs are highly conserved in both their sequence and their activity in the pharyngeal arches of two distantly related vertebrates, the zebrafish and the mouse. A better understanding of Dlx gene regulation of the Dlx genes and of the genetic cascades in which they are involved can lead to clues explaining variations in morphology of the craniofacial regions of vertebrates.  相似文献   

4.
The turtle shell forms by extensive ossification of dermis ventrally and dorsally. The carapacial ridge (CR) controls early dorsal shell formation and is thought to play a similar role in shell growth as the apical ectodermal ridge during limb development. However, the molecular mechanisms underlying carapace development are still unknown. Msx genes are involved in the development of limb mesenchyme and of various skeletal structures. In particular, precocious Msx expression is recorded in skeletal precursors that develop close to the ectoderm, such as vertebral spinous processes or skull. Here, we have studied the embryonic expression of Msx genes in the European pond turtle, Emys orbicularis. The overall Msx expression in head, limb, and trunk is similar to what is observed in other vertebrates. We have focused on the CR area and pre-skeletal shell condensations. The CR expresses Msx genes transiently, in a pattern similar to that of fgf10. In the future carapace domain, the dermis located dorsal to the spinal cord expresses Msx genes, as in other vertebrates, but we did not see expansion of this expression in the dermis located more laterally, on top of the dermomyotomes. In the ventral plastron, although the dermal osseous condensations form in the embryonic Msx-positive somatopleura, we did not observe enhanced Msx expression around these elements. These observations may indicate that common mechanisms participate in limb bud and CR early development, but that pre-differentiation steps differ between shell and other skeletal structures and involve other gene activities than that of Msx genes.Edited by D.A. Weisblat  相似文献   

5.

Background  

The phylogenetic position of the elephant shark (Callorhinchus milii ) is particularly relevant to study the evolution of genes and gene regulation in vertebrates. Here we examine the evolution of Dlx homeobox gene regulation during vertebrate embryonic development with a particular focus on the forebrain. We first identified the elephant shark sequence orthologous to the URE2 cis -regulatory element of the mouse Dlx1/Dlx2 locus (herein named CmURE2). We then conducted a comparative study of the sequence and enhancer activity of CmURE2 with that of orthologous regulatory sequences from zebrafish and mouse.  相似文献   

6.
To understand the relationship between the expression and the genomic organization of the zebrafishdlxgenes, we have determined the genomic structure of thedlx2anddlx4loci. This led to the identification of the zebrafishdlx1anddlx6genes, which are closely linked todlx2anddlx4,respectively. Therefore, the inverted convergent configuration ofDlxgenes is conserved among vertebrates. Analysis of the expression patterns ofdlx1anddlx6showed striking similarities to those ofdlx2anddlx4,respectively, the genes to which they are linked. Furthermore, the expression patterns ofdlx3anddlx7,which likely constitute a third pair of convergently transcribed genes, are indistinguishable. Thus, the overlapping expression patterns of linkedDlxgenes during embryonic development suggest that they sharecis-acting sequences that control their spatiotemporal expression. The evolutionary conservation of the genomic organization and combinatorial expression ofDlxgenes in distantly related vertebrates suggest tight control mechanisms that are essential for their function during development.  相似文献   

7.
Our laboratory and others have shown that overexpression of Dlx5 stimulates osteoblast differentiation. Dlx5−/−/Dlx6−/− mice have more severe craniofacial and limb defects than Dlx5−/−, some of which are potentially due to defects in osteoblast maturation. We wished to investigate the degree to which other Dlx genes compensate for the lack of Dlx5, thus allowing normal development of the majority of skeletal elements in Dlx5−/− mice. Dlx gene expression in cells from different stages of the osteoblast lineage isolated by FACS sorting showed that Dlx2, Dlx5 and Dlx6 are expressed most strongly in less mature osteoblasts, whereas Dlx3 is very highly expressed in differentiated osteoblasts and osteocytes. In situ hybridization and Northern blot analysis demonstrated the presence of endogenous Dlx3 mRNA within osteoblasts and osteocytes. Dlx3 strongly upregulates osteoblastic markers with a potency comparable to Dlx5. Cloned chick or mouse Dlx6 showed stimulatory effects on osteoblast differentiation. Our results suggest that Dlx2 and Dlx6 have the potential to stimulate osteoblastic differentiation and may compensate for the absence of Dlx5 to produce relatively normal osteoblastic differentiation in Dlx5 knockout mice, while Dlx3 may play a distinct role in late stage osteoblast differentiation and osteocyte function.  相似文献   

8.
9.
In jawed vertebrates, the Dlx code, or nested expression patterns of Dlx genes, specify the dorsoventral polarity of pharyngeal arches, downstream of endothelin-1 (Edn-1) and its effectors, Bapx1 (Nkx3.2) and dHand (Hand2). To elucidate the evolution of the specification mechanism of the oropharyngeal skeletal system, lamprey homologs of Dlx, Edn, endothelin receptor (Ednr), Bapx1, and dHand were identified. Our analysis suggested that the Edn gene family emerged at the advent of vertebrates, and that gene duplications leading to the different Edn gnathostome subtypes (Edn1-3) occurred before the cyclostome-gnathostome split. This timing of gene duplications, giving rise to multiple subtypes, was also implied for Dlx, Ednr, Hand, and Bapx. In lamprey embryos, nested expressions of Dlx genes were not observed in pharyngeal arches, nor was any focal expression of Bapx1, known in gnathostomes to specify the jaw joint. The dHand homolog, however, was expressed more intensively ventrally, as in gnathostomes. Lamprey homologs of Edn-1 and EdnrA were also shown to be expressed as described in mice, indicating involvement of this signaling pathway in the craniofacial patterning early in vertebrate evolution. These results suggest that the last common ancestor of all the extant vertebrates would have possessed basic gene repertoires involved in oropharyngeal patterning in gnathostomes, but the elaborate genetic program leading to the Dlx code is likely to have been acquired uniquely in gnathostomes.  相似文献   

10.
The axial and appendicular skeleton of vertebrates develops by endochondral ossification, in which skeletogenic tissue is initially cartilaginous and the differentiation of chondrocytes via the hypertrophic pathway precedes the differentiation of osteoblasts and the deposition of a definitive bone matrix. Results from both loss-of-function and misexpression studies have implicated the related homeobox genes Dlx5 and Dlx6 as partially redundant positive regulators of chondrocyte hypertrophy. However, experimental perturbations of Dlx expression have either not been cell type specific or have been done in the context of endogenous Dlx5 expression. Thus, it has not been possible to conclude whether the effects on chondrocyte differentiation are cell autonomous or whether they are mediated by Dlx expression in adjacent tissues, notably the perichondrium. To address this question we first engineered transgenic mice in which Dlx5 expression was specifically restricted to immature and differentiating chondrocytes and not the perichondrium. Col2a1-Dlx5 transgenic embryos and neonates displayed accelerated chondrocyte hypertrophy and mineralization throughout the endochondral skeleton. Furthermore, this transgene specifically rescued defects of chondrocyte differentiation characteristic of the Dlx5/6 null phenotype. Based on these results, we conclude that the role of Dlx5 in the hypertrophic pathway is cell autonomous. We further conclude that Dlx5 and Dlx6 are functionally equivalent in the endochondral skeleton, in that the requirement for Dlx5 and Dlx6 function during chondrocyte hypertrophy can be satisfied with Dlx5 alone.  相似文献   

11.
12.
13.
14.
The formation of bone resorbing osteoclasts in vivo is orchestrated by cells of the osteoblast lineage such as periodontal ligament fibroblasts that provide the proper signals to osteoclast precursors. Although the requirement of cell–cell interactions is widely acknowledged, it is unknown whether these interactions influence the expression of genes required for osteoclastogenesis and the ultimate formation of osteoclasts. In the present study we investigated the effect of cell–cell interaction on the mRNA expression of adhesion molecules and molecules involved in osteoclast formation in cultures of peripheral blood mononuclear cells (PBMCs) and human primary periodontal ligament fibroblasts, both as solitary cultures and in co‐culture. We further analyzed the formation of multinucleated, tartrate resistant acid phosphatase (TRACP) positive cells and assessed their bone resorbing abilities. Interestingly, gene expression of intercellular adhesion molecule‐1 (ICAM‐1) and of osteoclastogenesis‐related genes (RANKL, RANK, TNF‐α, and IL‐1β) was highly up‐regulated in the co‐cultures compared to mono‐cultures and the 5–10‐fold up‐regulation reflected a synergistic increase due to direct cell–cell interaction. This induction strongly overpowered the effects of known osteoclastogenesis inducers 1,25(OH)2VitD3 and dexamethasone. In case of indirect cell–cell contact mRNA expression was not altered, indicating that heterotypic adhesion is required for the increase in gene expression. In addition, the number of osteoclast‐like cells that were formed in co‐culture with periodontal ligament fibroblasts was significantly augmented compared to mono‐cultures. Our data indicate that cell–cell adhesion between osteoclast precursors and periodontal ligament fibroblasts significantly modulates the cellular response which favors the expression of osteoclast differentiation genes and the ultimate formation of osteoclasts. J. Cell. Physiol. 222: 565–573, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
During development of the mouse forebrain interneurons, the Dlx genes play a key role in a gene regulatory network (GRN) that leads to the GABAergic phenotype. Here, we have examined the regulatory relationships between the ascl1a, dlx, and gad1b genes in the zebrafish forebrain. Expression of ascl1a overlaps with dlx1a in the telencephalon and diencephalon during early forebrain development. The loss of Ascl1a function results in a loss of dlx expression, and subsequent losses of dlx5a and gad1b expression in the diencephalic prethalamus and hypothalamus. Loss of Dlx1a and Dlx2a function, and, to a lesser extent, of Dlx5a and Dlx6a, impairs gad1b expression in the prethalamus and hypothalamus. We conclude that dlx1a/2a act downstream of ascl1a but upstream of dlx5a/dlx6a and gad1b to activate GABAergic specification. This pathway is conserved in the diencephalon, but has diverged between mammals and teleosts in the telencephalon.  相似文献   

16.
17.
The morphogenesis of the vertebrate skull results from highly dynamic integrated processes involving the exchange of signals between the ectoderm, the endoderm, and cephalic neural crest cells (CNCCs). Before migration CNCCs are not committed to form any specific skull element, molecular signals exchanged in restricted regions of tissue interaction are crucial in providing positional identity to the CNCCs mesenchyme and activate the specific morphogenetic process of different skeletal components of the head. In particular, the endothelin‐1 (Edn1)‐dependent activation of Dlx5 and Dlx6 in CNCCs that colonize the first pharyngeal arch (PA1) is necessary and sufficient to specify maxillo‐mandibular identity. Here, to better analyze the spatio‐temporal dynamics of this process, we associate quantitative gene expression analysis with detailed examination of skeletal phenotypes resulting from combined allelic reduction of Edn1, Dlx5, and Dlx6. We show that Edn1‐dependent and ‐independent regulatory pathways act at different developmental times in distinct regions of PA1. The Edn1→Dlx5/6→Hand2 pathway is already active at E9.5 during early stages of CNCCs colonization. At later stages (E10.5) the scenario is more complex: we propose a model in which PA1 is subdivided into four adjacent territories in which distinct regulations are taking place. This new developmental model may provide a conceptual framework to interpret the craniofacial malformations present in several mouse mutants and in human first arch syndromes. More in general, our findings emphasize the importance of quantitative gene expression in the fine control of morphogenetic events. genesis 48:362–373, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
19.
Tooth development is a complex process including successive stages of initiation, morphogenesis, and histogenesis. The role of the Dlx family of homeobox genes during the early stages of tooth development has been widely analyzed, while little data has been reported on their role in dental histogenesis. The expression pattern of Dlx2 has been described in the mouse incisor; an inverse linear relationship exists between the level of Dlx2 expression and enamel thickness, suggesting a role for Dlx2 in regulation of ameloblast differentiation and activity. In vitro data have revealed that DLX homeoproteins are able to regulate the expression of matrix proteins such as osteocalcin. The aim of the present study was to analyze the expression and function of Dlx genes during amelogenesis. Analysis of Dlx2/LacZ transgenic reporter mice, Dlx2 and Dlx1/Dlx2 null mutant mice, identified spatial variations in Dlx2 expression within molar tooth germs and suggests a role for Dlx2 in the organization of preameloblastic cells as a palisade in the labial region of molars. Later, during the secretory and maturation stages of amelogenesis, the expression pattern in molars was found to be similar to that described in incisors. The expression patterns of the other Dlx genes were examined in incisors and compared to Dlx2. Within the ameloblasts Dlx3 and Dlx6 are expressed constantly throughout presecretory, secretory, and maturation stages; during the secretory phase when Dlx2 is transitorily switched off, Dlx1 expression is upregulated. These data suggest a role for DLX homeoproteins in the morphological control of enamel. Sequence analysis of the amelogenin gene promoter revealed five potential responsive elements for DLX proteins that are shown to be functional for DLX2. Regulation of amelogenin in ameloblasts may be one method by which DLX homeoproteins may control enamel formation. To conclude, this study establishes supplementary functions of Dlx family members during tooth development: the participation in establishment of dental epithelial functional organization and the control of enamel morphogenesis via regulation of amelogenin expression.  相似文献   

20.
Vertebrate head development is a classical topic lately invigorated by methodological as well as conceptual advances. In contrast to the classical segmentalist views going back to idealistic morphology, the head is now seen not as simply an extension of the trunk, but as a structure patterned by different mechanisms and tissues. Whereas the trunk paraxial mesoderm imposes its segmental pattern on adjacent tissues such as the neural crest derivatives, in the head the neural crest cells carry pattern information needed for proper morphogenesis of mesodermal derivatives, such as the cranial muscles. Neural crest cells make connective tissue components which attach the muscle fiber to the skeletal elements. These crest cells take their origin from the same visceral arch as the muscle cells, even when the skeletal elements to which the muscle attaches are from another arch. The neural crest itself receives important patterning influences from the pharyngeal endoderm. The origin of jaws can be seen as an exaptation in which a heterotopic shift of the expression domains of regulatory genes was a necessary step that enabled this key innovation. The jaws are patterned by Dlx genes expressed in a nested pattern along the proximo-distal axis, analogous to the anterior–posterior specification governed by Hox genes. Knocking out Dlx 5 and 6 transforms the lower jaw homeotically into an upper jaw. New data indicate that both upper and lower jaw cartilages are derived from one, common anlage traditionally labelled the “mandibular” condensation, and that the “maxillary” condensation gives rise to other structures such as the trabecula. We propose that the main contribution from evolutionary developmental biology to solving homology questions lies in deepening our biological understanding of characters and character states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号