首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of protein tyrosine phosphorylation is required for sperm capacitation and oocyte fertilization. The objective of the present work was to study the role of the calcium‐sensing receptor (CaSR) on protein tyrosine phosphorylation in boar spermatozoa under capacitating conditions. To do this, boar spermatozoa were incubated in Tyrode's complete medium for 4 hr and the specific inhibitor of the CaSR, NPS2143, was used. Also, to study the possible mechanism(s) by which this receptor exerts its function, spermatozoa were incubated in the presence of specific inhibitors of the 3‐phosphoinositide dependent protein kinase 1 (PDK1) and protein kinase A (PKA). Treatment with NPS2143, GSK2334470, an inhibitor of PDK1 and H‐89, an inhibitor of PKA separately induced an increase in tyrosine phosphorylation of 18 and 32 kDa proteins, a decrease in the serine/threonine phosphorylation of the PKA substrates together with a drop in sperm motility and viability. The present work proposes a new signalling pathway of the CaSR, mediated by PDK1 and PKA in boar spermatozoa under capacitating conditions. Our results show that the inhibition of the CaSR induces the inhibition of PDK1 that blocks PKA activity resulting in a rise in tyrosine phosphorylation of p18 and p32 proteins. This novel signalling pathway has not been described before and could be crucial to understand boar sperm capacitation within the female reproductive tract.  相似文献   

2.
Glycogen Synthase Kinase 3 (GSK3) is a multifunctional kinase involved in diverse cellular activities such as metabolism, differentiation, and morphogenesis. Recent studies showed that GSK3 in Dictyostelium affects chemotaxis via TorC2 pathway and Daydreamer. Now we report that GSK3 affects PI3K membrane localization, of which the mechanism has remained to be fully understood in Dictyostelium. The membrane localization domain (LD) of Phosphatidylinositol‐3‐kinase 1 (PI3K1) is phosphorylated on serine residues in a GSK3 dependent mechanism and PI3K1‐LD exhibited biased membrane localization in gsk3? cells compared to the wild type cells. Furthermore, multiple GSK3‐phosphorylation consensus sites exist in PI3K1‐LD, of which phosphomimetic substitutions restored cAMP induced transient membrane localization of PI3K1‐LD in gsk3? cells. Serine to alanine substitution mutants of PI3K1‐LD, in contrast, displayed constitutive membrane localization in wild type cells. Biochemical analysis revealed that GSK3 dependent serine phosphorylation of PI3K1‐LD is constitutive during the course of cAMP stimulation. Together, these data suggest that GSK3 dependent serine phosphorylation is a prerequisite for chemoattractant cAMP induced PI3K membrane localization.  相似文献   

3.
It has been extensively described that neuronal differentiation involves the signalling through neurotrophin receptors to a Ras-dependent mitogen-activated protein kinase (MAPK) cascade. However, signalling pathways from other neuritogenic factors have not been well established. It has been reported that cAMP may activate protein kinase (PKA), and it has been shown that PKA-mediated stimulation of MAPK pathway regulates not only neuritogenesis but also survival. However, extracellular regulated kinases (ERKs) mediated pathways are not sufficient to explain all the processes which occur in neuronal differentiation. Our present data show that: in cAMP-mediated neuritogenesis, using the SH-SY5Y human neuroblastoma cell line, there exists a link between the activation of PKA and stimulation of phosphatidylinositol 3-kinase (PI3K). Both kinase activities are essential to the initial elongation steps. Surprisingly, this neuritogenic process appears to be independent of ERKs. While the activity of PI3K is essential for elongation and maintenance of neurites, its inhibition causes retraction. In this neurite retraction process, GSK3 is activated. Using both a pharmacological approach and gene transfer of a dominant negative form of GSK3, we conclude that this induced retraction is a GSK3-dependent process which in turn appears to be a common target for transduction pathways involved in lysophosphatidic acid-mediated and PI3K-mediated neurite retraction.  相似文献   

4.
Mammalian testicular spermatozoa are immotile, thus, to reach the oocyte, they need to acquire swimming ability under the control of different factors acting during the sperm transit through the epididymis and the female genital tract. Although bicarbonate is known to physiologically increase motility by stimulating soluble adenylate cyclase (sAC) activity of mammalian spermatozoa, no extensive studies in human sperm have been performed yet to elucidate the additional molecular mechanisms involved. In this light, we investigated the effect of in vitro addition of bicarbonate to human spermatozoa on the main intracellular signaling pathways involved in regulation of motility, namely, intracellular cAMP production and protein tyrosine phosphorylation. Bicarbonate effects were compared with those of the phosphatidyl-inositol-3 kinase inhibitor, LY294002, previously demonstrated to be a pharmacological stimulus for sperm motility. Bicarbonate addition to spermatozoa results in a significant increase in sperm motility as well as in several hyperactivation parameters. This stimulatory effect of bicarbonate and LY294002 is mediated by an increase in cAMP production and tyrosine phosphorylation of the A kinase anchoring protein, AKAP3. The specificity of bicarbonate effects was confirmed by inhibition with 4,4'-di-isothiocyanostilbene-2,2'-disulfonic acid. We remark that, in human spermatozoa, bicarbonate acts primarily through activation of sAC to stimulate tyrosine phosphorylation of AKAP3 and sperm motility because both effects are blunted by the sAC inhibitor 2OH-estradiol. In conclusion, our data provide the first evidence that bicarbonate stimulates human sperm motility and hyperactivation through activation of sAC and tyrosine phosphorylation of AKAP3, finally leading to an increased recruitment of PKA to AKAP3.  相似文献   

5.
Phosphatidylinositol 3-kinase (PI3-K) plays an important role in cell survival in somatic cells and recent data pointed out a role for this kinase in sperm capacitation and acrosome reaction (AR). This study was undertaken to evaluate the role of PI3-K pathway on porcine spermatozoa capacitation, AR, and viability using two unrelated PI3-K inhibitors, LY294002 and wortmannin. In boar spermatozoa, we have identified the presence of PDK1, PKB/Akt, and PTEN, three of the main key components of the PI3-K pathway. Incubation of boar sperm in a capacitating medium (TCM) caused a significant increase in the percentage of capacitated (25 +/- 2 to 34 +/- 1% P < 0.05, n = 6) and acrosome reacted (1 +/- 1 to 11 +/- 1% P < 0.01, n = 6) spermatozoa compared with sperm in basal medium (TBM). Inhibition of PI3-K did affect neither the capacitation status nor AR nor protein p32 tyrosine phosphorylation of boar spermatozoa incubated in TBM or TCM. Boar sperm viability in TBM was significantly decreased by 40 and 20% after pretreatment with LY294002 or wortmannin, respectively. Similar results were observed after incubation of boar spermatozoa in TCM. Treatment of boar spermatozoa with the analog of cAMP, 8Br-cAMP significantly prevented the reduction on sperm viability. Our results provide evidence for an important role of the PI3-K pathway in the regulation of boar sperm viability and suggests that other signaling pathways different from PI3-K must be activated downstream of cAMP to contribute to regulation of sperm viability. Finally, in our conditions the PI3-K pathway seems not related with boar sperm capacitation or AR.  相似文献   

6.
7.
A cAMP-induced protein tyrosine phosphorylation and flagellar hyperactivation are controlled via complicated signaling cascades in mammalian spermatozoa. For instance, these events seem to be regulated positively by the PKA-mediated signaling and negatively by the PI3K/PDK1-mediated signaling. In this article, we have shown molecular changes of PKA and PDK1 in cAMP analog (cBiMPS)-treated boar spermatozoa in order to disclose possible roles of these kinases in protein tyrosine phosphorylation and hyperactivation. Ejaculated spermatozoa were incubated with cBiMPS, and then they were used for biochemical analyses of sperm kinases by Western blotting and indirect immunofluorescence and for assessment of flagellar movement. The first 30-min incubation with cBiMPS highly activated PKA of the principal piece to the accompaniment of autophosphorylation on Thr-197 of catalytic subunits. However, protein tyrosine phosphorylation and hyperactivation were fully induced in the sperm samples after the 180-min incubation. A potentially active form of PDK1 (54/55-kDa phospho-PDK1) was detected in the principal piece of the spermatozoa during the 90-min incubation. Another potentially active form (59-kDa phospho-PDK1) gradually increased during the same incubation period. However, the PDK1 suddenly became inactive by the dephosphorylation after the 180-min incubation, namely coincidently with full induction of protein tyrosine phosphorylation and hyperactivation. Additionally, existence of PI3K-dependently suppressing mechanisms for protein tyrosine phosphorylation was confirmed in the principal piece by pharmacological experiments with LY294002 and biochemical analyses with anti-PI3K p85 antibodies. These findings suggest that dephosphorylation of PDK1 may be a molecular switch for enhancement of protein tyrosine phosphorylation and flagellar hyperactivation in boar spermatozoa.  相似文献   

8.
The effects of cyclic AMP (cAMP) on cell proliferation are cell type specific. Although the growth-inhibitory effects of cAMP have been well studied, much less is known regarding how cAMP stimulates proliferation. We report that cAMP stimulates proliferation through both protein kinase A (PKA)-dependent and PKA-independent signaling pathways and that phosphatidylinositol 3-kinase (PI3K) is required for cAMP-stimulated mitogenesis. In cells where cAMP is a mitogen, cAMP-elevating agents stimulate membrane ruffling, Akt phosphorylation, and p70 ribosomal S6 protein kinase (p70s6k) activity. cAMP effects on ruffle formation and Akt were PKA independent but sensitive to wortmannin. In contrast, cAMP-stimulated p70s6k activity was repressed by PKA inhibitors but not by wortmannin or microinjection of the N-terminal SH2 domain of the p85 regulatory subunit of PI3K, indicating that p70s6k and Akt can be regulated independently. Microinjection of highly specific inhibitors of PI3K or Rac1, or treatment with the p70s6k inhibitor rapamycin, impaired cAMP-stimulated DNA synthesis, demonstrating that PKA-dependent and -independent pathways contribute to cAMP-mediated mitogenesis. Direct elevation of PI3K activity through microinjection of an antibody that stimulates PI3K activity or stable expression of membrane-localized p110 was sufficient to confer hormone-independent DNA synthesis when accompanied by elevations in p70s6k activity. These findings indicate that multiple pathways contribute to cAMP-stimulated mitogenesis, only some of which are PKA dependent. Furthermore, they demonstrate that the ability of cAMP to stimulate both p70s6k- and PI3K-dependent pathways is an important facet of cAMP-regulated cell cycle progression.  相似文献   

9.
A cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein tyrosine phosphorylation is involved in the expression of fertilizing ability in mammalian spermatozoa. However, there are only limited data concerning the identification of protein tyrosine kinase (PTK) that is activated by the cAMP signaling. In this study, we have shown data supporting that boar sperm flagellum possesses a unique cAMP-protein kinase A (PKA) signaling cascade leading to phosphorylation of Syk PTK at the tyrosine residues of the activation loop. Ejaculated spermatozoa were washed and then incubated in a modified Krebs-Ringer HEPES medium (mKRH) containing polyvinyl alcohol (PVA) plus 0.1 mM cBiMPS (a cell-permeable cAMP analog), 0.25 mM sodium orthovanadate (Na3VO4) (a protein tyrosine phosphatase (PTP) inhibitor) or both at 38.5 degrees C for 180 min. Aliquots of the sperm suspensions were recovered before and after incubation and then used to detect sperm tyrosine-phosphorylated proteins by Western blotting and indirect immunofluorescence. In the Western blotting, the anti-phosphotyrosine monoclonal antibody (4G10) recognized several bands including 72-kDa protein in the protein extracts from spermatozoa that were incubated solely with cBiMPS. The tyrosine phosphorylation in these sperm proteins was dependent on cBiMPS and enhanced by the addition of Na3VO4. The 72-kDa tyrosine-phosphorylated protein was apparently reacted with the anti-phospho-Syk antibody (Tyr525/526). Indirect immunofluorescence revealed that the connecting and principal pieces of spermatozoa incubated with cBiMPS and Na3VO4 were stained with the anti-phospho-Syk antibody. However, the reactivity of the 72-kDa protein with the anti-phospho-Syk antibody was reduced by the addition of H-89 (a PKA inhibitor, 0.01-0.1 mM) to the sperm suspensions but not affected by the pretreatment of spermatozoa with BAPTA-AM (an intracellular Ca2+ chelator, 0.1 mM). Fractionation of phosphorylated proteins from the spermatozoa with a detergent Nonidet P-40 suggested that the 72-kDa tyrosine-phosphorylated protein might be a cytoskeletal component. Based on these findings, we have concluded that the cAMP-PKA signaling is linked to the Ca2+-independent tyrosine phosphorylation of Syk in the connecting and principal pieces of boar spermatozoa.  相似文献   

10.
In mammalian spermatozoa, the state of protein tyrosine phosphorylation is modulated by protein tyrosine kinases and protein tyrosine phosphatases that are controlled via cyclic AMP (cAMP)‐protein kinase A (PKA) signaling cascades. The aims of this study were to examine the involvement of cAMP‐induced protein tyrosine phosphorylation in response to extracellular calcium and to characterize effects of pharmacological modulation of the cAMP‐induced protein phosphorylation state and calmodulin activity during hyperactivation in boar spermatozoa. Ejaculated spermatozoa were incubated with cBiMPS (a cell‐permeable cAMP analog) and CaCl2 at 38.5°C to induce hyperactivation, and then used for Western blotting and indirect immunofluorescence of phosphorylated proteins and for the assessment of motility. Both cBiMPS and CaCl2 were necessary for hyperactivation. The increase in hyperactivated spermatozoa exhibited a dependence on the state of cBiMPS‐induced protein tyrosine phosphorylation in the connecting and principal pieces. The addition of calyculin A (an inhibitor for protein phosphatases 1/2A (PP1/PP2A), 50–100 nM) coincidently promoted hyperactivation and cAMP‐induced protein tyrosine phosphorylation in the presence of cBiMPS and CaCl2. Moreover, the addition of W‐7 (a calmodulin antagonist, 2–4 µM) enhanced the percentages of hyperactivated spermatozoa after incubation with cBiMPS and CaCl2, independently of protein tyrosine phosphorylation. These findings indicate that cAMP‐induced protein tyrosine phosphorylation in the connecting and principal pieces is involved in hyperactivation in response to extracellular calcium, and that calmodulin may suppress hyperactivation via the signaling cascades that are independent of cAMP‐induced protein tyrosine phosphorylation. Mol. Reprod. Dev. 79: 727–739, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Antagonism of voltage-dependent K+ (Kv) currents in pancreatic beta-cells may contribute to the ability of glucagon-like peptide-1 (GLP-1) to stimulate insulin secretion. The mechanism and signaling pathway regulating these currents in rat beta-cells were investigated using the GLP-1 receptor agonist exendin 4. Inhibition of Kv currents resulted from a 20-mV leftward shift in the voltage dependence of steady-state inactivation. Blocking cAMP or protein kinase A (PKA) signaling (Rp-cAMP and H-89, respectively) prevented the inhibition of currents by exendin 4. However, direct activation of this pathway alone by intracellular dialysis of cAMP or the PKA catalytic subunit (cPKA) could not inhibit currents, implicating a role for alternative signaling pathways. A number of phosphorylation sites associated with phosphatidylinositol 3 (PI3)-kinase activation were up-regulated in GLP-1-treated MIN6 insulinoma cells, and the PI3 kinase inhibitor wortmannin could prevent antagonism of beta-cell currents by exendin 4. Antagonists of Src family kinases (PP1) and the epidermal growth factor (EGF) receptor (AG1478) also prevented current inhibition by exendin 4, demonstrating a role for Src kinase-mediated trans-activation of the EGF tyrosine kinase receptor. Accordingly, the EGF receptor agonist betacellulin could replicate the effects of exendin 4 in the presence of elevated intracellular cAMP. Downstream, the PKCzeta pseudosubstrate inhibitor could prevent current inhibition by exendin 4. Therefore, antagonism of beta-cell Kv currents by GLP-1 receptor activation requires both cAMP/PKA and PI3 kinase/PKCzeta signaling via trans-activation of the EGF receptor. This represents a novel dual pathway for the control of Kv currents by G protein-coupled receptors.  相似文献   

12.
The modulation of phosphoinositide 3-kinase (PI3K) activity influences the quality of cellular responses triggered by various receptor tyrosine kinases. Protein kinase C (PKC) has been reported to phosphorylate signalling molecules upstream of PI3K and thereby it may affect the activation of PI3K. Here, we provide the first evidence for a direct effect of a PKC isoenzyme on the activity of PI3K. PKCalpha but not PKCepsilon phosphorylated the catalytic subunit of the p110alpha/p85alpha PI3K in vitro in a manner inhibited by the PKC inhibitor bisindolylmaleimide I (BIM I). The incubation of PI3K with active PKCalpha resulted in a significant decrease in its lipid kinase activity and this effect was also attenuated by BIM I. We conclude that PKCalpha is able to modulate negatively the lipid kinase activity of the p110alpha/p85alpha PI3K through the phosphorylation of the catalytic subunit.  相似文献   

13.
PGE2 plays a critical role in colorectal carcinogenesis. We have previously shown that COX-2 expression and PGE2 synthesis are mediated by IGF-II/IGF-I receptor signaling in the Caco-2 cell line and that the pathway of phosphatidylinositol 3-kinase (PI3K)/Akt protects the cell from apoptosis. In the present study, we demonstrate that PGE2 has the ability to increase Ras and PI3K association and decrease the level of apoptosis in the same experimental system. The effect of PGE2 on PI3K/Ras association is dependent on the activation of EP4 receptor, the increase of cAMP levels, and the activation of PKA. In fact, treatment of cells with the PKA inhibitor H89 decreases the association of Ras and PI3K and Ras-associated PI3K activity. PKA inhibitor H89 is able to decrease threonine phosphorylation of Akt and to increase serine phosphorylation of Akt by p38 MAPK and counteracts the cytoprotective effect induced by PGE2. In addition, PGE2 is able to activate p38 MAPK and the inhibition of p38 MAPK, with SB203580 specific inhibitor or with dominant negative MKK6 kinase, is able to revert the apoptotic effect of H89 and serine phosphorylation of Akt. The effect of PGE2 on Caco-2 cell survival through PKA activation is mediated and regulated by the balance of threonine/serine phosphorylation of Akt by p38 kinase and PI3K. In conclusion, our data elucidate a novel mechanism for regulation of colon cancer cell survival and provide evidences for new combinatory treatments of colon cancer.  相似文献   

14.
This study examined how L-leucine affected DNA synthesis and cell cycle regulatory protein expression in cultured primary chicken hepatocytes. L-Leucine promoted DNA synthesis in a dose- and time-dependent manner, with concomitant increases in cyclin D1 and cyclin E expression. Phospholipase C (PLC) and protein kinase C (PKC) mediated the L-leucine-induced increases in [3H]-thymidine incorporation and cyclin D1/CDK4 and cyclin E/CDK2 expression, as U73122 (a PLC inhibitor) or bisindolylmaleimide I (a PKC blocker) inhibited these effects. L-Leucine also increased PKC phosphorylation and intracellular Ca2+ levels. L-Leucine-mediated increases in [3H]-thymidine incorporation and cyclin/CDK expression were sensitive to LY 294002 (PI3K inhibitor), Akt inhibitor, PD 98059 (MEK inhibitor). It was also observed that L-leucine-induced increases of cyclin/CDK expression were inhibited by PI3K siRNA and ERK siRNA; L-leucine increased extracellular signal-regulated kinases 1/2 (ERK1/2) and Akt phosphorylation levels. Bisindolylmaleimide I attenuated L-leucine-induced phosphorylation of ERK1/2 but did not influence Akt phosphorylation, and PI3K siRNA and LY 294002 inhibited L-leucine-induced ERK1/2 phosphorylation, suggesting some cross-talk between the PKC and ERK1/2 or PI3K/Akt and ERK1/2 pathways. L-Leucine also increased the levels of phosphorylated molecular target of rapamycin (mTOR) and two of its targets, ribosomal protein S6 kinase (p70S6K), and 4E binding protein 1 (4E-BP1); furthermore, rapamycin (an mTOR inhibitor) blocked all of the mitogenic effects of L-leucine. In addition, Akt inhibitor blocked L-leucine-induced mTOR phosphorylation. In conclusion, L-leucine stimulated DNA synthesis and promoted cell cycle progression in primary cultured chicken hepatocytes through PKC, ERK1/2, PI3K/Akt, and mTOR.  相似文献   

15.
Jin L  Hu X  Feng L 《Journal of neurochemistry》2005,93(5):1251-1261
Neurotrophin 3 (NT3), a member of the neurotrophin family, antagonizes the proliferative effect of fibroblast growth factor 2 (FGF2) on cortical precursors. However, the mechanism by which NT3 inhibits FGF2-induced neural progenitor (NP) cell proliferation is unclear. Here, using an FGF2-dependent rat neurosphere culture system, we found that NT3 inhibits both FGF2-induced neurosphere growth and bromodeoxyuridine (BrdU) incorporation in a dose-dependent manner. U0126, a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, both inhibited FGF2-induced BrdU incorporation, suggesting that the extracellular signal-regulated kinase1/2 (ERK1/2) and PI3K pathways are required for FGF2-induced NP cell proliferation. NT3 significantly inhibited FGF2-induced phosphorylation of Akt and glycogen synthase kinase 3beta (GSK3beta), a downstream kinase of Akt, whereas phosphorylation of ERK1/2 was unaffected. The inhibitory effect of NT3 on FGF2-induced NP cell proliferation was abolished by LY294002, and treatment with SB216763, a specific GSK3 inhibitor, antagonized the NT3 effect, rescuing both neurosphere growth and BrdU incorporation. Moreover, experiments with anti-NT3 antibody revealed that endogenous NT3 also plays a role in inhibiting FGF2-induced NP cell proliferation, and that anti-NT3 antibody enhanced phospho-Akt and phospho-GSK3beta levels in the presence of FGF2. These findings indicate that FGF2-induced NP cell proliferation is inhibited by NT3 via the PI3K/GSK3 pathway.  相似文献   

16.
Prostaglandin E2 (PGE2) is well known to regulate cell functions through cAMP; however, the role of exchange protein directly activated by cAMP (Epac1) and protein kinase A (PKA) in modulating such functions is unknown in human umbilical cord blood‐derived mesenchymal stem cells (hUCB‐MSCs). Therefore, we investigated the relationship between Epac1 and PKA during PGE2‐induced hUCB‐MSC proliferation and its related signaling pathways. PGE2 increased cell proliferation, and E‐type prostaglandin (EP) 2 receptor mRNA expression level and activated cAMP generation, which were blocked by EP2 receptor selective antagonist AH 6809. PGE2 increased Epac1 expression, Ras‐related protein 1 (Rap1) activation level, and Akt phosphorylation, which were inhibited by AH 6809, adenylyl cyclase inhibitor SQ 22536, and Epac1/Rap1‐specific siRNA. Also, PGE2 increased PKA activity, which was inhibited by AH 6809, SQ 22536, and PKA inhibitor PKI. HUCB‐MSCs were incubated with the Epac agonist 8‐pCPT‐cAMP or the PKA agonist 6‐phe‐cAMP to examine whether Epac1/Rap1/Akt activation was independent of PKA activation. 8‐pCPT‐cAMP increased Akt phosphorylation but not PKA activity. 6‐Phe‐cAMP increased PKA activity, but not Akt phosphorylation. Additionally, an Akt inhibitor or PKA inhibitor (PKI) did not block the PGE2‐induced increase in PKA activity or Akt phosphorylation, respectively. Moreover, PGE2 increased glycogen synthase kinase (GSK)‐3β phosphorylation and nuclear translocation of active‐β‐catenin, which were inhibited by Akt inhibitor or/and PKI. PGE2 increased c‐Myc and vascular endothelial growth factor (VEGF) expression levels, which were blocked by β‐catenin siRNA. In conclusion, PGE2 stimulated hUCB‐MSC proliferation through β‐catenin‐mediated c‐Myc and VEGF expression via Epac/Rap1/Akt and PKA cooperation. J. Cell. Physiol. 227: 3756–3767, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
We recently demonstrated that the tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) helps maintenance of cell survival by regulating glycogen synthase kinase 3β (GSK3β) activity during TNF signaling. However, the molecular linkage between TRAF6 and GSK3β signaling is unknown. Herein, we showed that TRAF6 positively regulated cell survival by modulating PI3K-Akt-GSK3β cascades. In 3T3 cells lacking TRAF6, but not those lacking TRAF2, TNF stimulation led to prolonged hyperphosphorylation of Akt, which coincided with the activation of upstream PI3K. Pharmacologically blocking PI3K significantly inhibited Akt and GSK3β phosphorylation. Importantly, PI3K inhibition rescued cell death in TRAF6-null 3T3 cells. These data suggested TRAF6 regulates TNF-mediated cell survival through PI3K-Akt-GSK3β cascades.  相似文献   

18.
βig-h3, an extracellular matrix protein involved in various biological processes including cellular growth, differentiation, adhesion, migration, and angiogenesis, has been shown to be elevated in various inflammatory processes. Death receptor 3 (DR3), a member of the TNF-receptor superfamily that is expressed on T cells and macrophages, is involved in the regulation of inflammatory processes through interaction with its cognate ligand, TNF-like ligand 1A (TL1A). In order to find out whether the TL1A-induced inflammatory activation of macrophages is associated with the up-regulation of βig-h3 expression, the human acute monocytic leukemia cell line (THP-1) was stimulated with either recombinant human TL1A- or DR3-specific monoclonal antibodies. Stimulation of DR3 up-regulated the intracellular levels as well as the secretion of βig-h3. Utilization of various inhibitors and Western blot analysis revealed that activation of protein kinase C (PKC), extracellular signal-regulated kinase (ERK), phosphoinositide kinase-3 (PI3K), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is required for TL1A-induced βig-h3 expression. PKC appears to be the upstream regulator of PI3K since the presence of PKC inhibitor blocked the phosphorylation of AKT without affecting ERK phosphorylation. On the other hand, suppression of either PI3K or ERK activity resulted in the suppression of IκB phosphorylation. These findings indicate that TL1A can regulate the inflammatory processes through modulation of the βig-h3 expression through two separate pathways, one through PKC and PI3K and the other through ERK, which culminates at NF-κB activation.  相似文献   

19.
20.
PDK1 (3-phosphoinositide-dependent protein kinase 1) activates a group of protein kinases belonging to the AGC [PKA (protein kinase A)/PKG (protein kinase G)/PKC (protein kinase C)]-kinase family that play important roles in mediating diverse biological processes. Many cancer-driving mutations induce activation of PDK1 targets including Akt, S6K (p70 ribosomal S6 kinase) and SGK (serum- and glucocorticoid-induced protein kinase). In the present paper, we describe the small molecule GSK2334470, which inhibits PDK1 with an IC?? of ~10 nM, but does not suppress the activity of 93 other protein kinases including 13 AGC-kinases most related to PDK1 at 500-fold higher concentrations. Addition of GSK2334470 to HEK (human embryonic kidney)-293, U87 or MEF (mouse embryonic fibroblast) cells ablated T-loop residue phosphorylation and activation of SGK isoforms and S6K1 induced by serum or IGF1 (insulin-like growth factor 1). GSK2334470 also inhibited T-loop phosphorylation and activation of Akt, but was more efficient at inhibiting Akt in response to stimuli such as serum that activated the PI3K (phosphoinositide 3-kinase) pathway weakly. GSK2334470 inhibited activation of an Akt1 mutant lacking the PH domain (pleckstrin homology domain) more potently than full-length Akt1, suggesting that GSK2334470 is more effective at inhibiting PDK1 substrates that are activated in the cytosol rather than at the plasma membrane. Consistent with this, GSK2334470 inhibited Akt activation in knock-in embryonic stem cells expressing a mutant of PDK1 that is unable to interact with phosphoinositides more potently than in wild-type cells. GSK2334470 also suppressed T-loop phosphorylation and activation of RSK2 (p90 ribosomal S6 kinase 2), another PDK1 target activated by the ERK (extracellular-signal-regulated kinase) pathway. However, prolonged treatment of cells with inhibitor was required to observe inhibition of RSK2, indicating that PDK1 substrates possess distinct T-loop dephosphorylation kinetics. Our data define how PDK1 inhibitors affect AGC signalling pathways and suggest that GSK2334470 will be a useful tool for delineating the roles of PDK1 in biological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号