首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elevated oxidative stress plays a key role in diabetes-associated vascular disease. In this study, we tested the hypothesis that high glucose-induced oxidative stress was associated with changes in the expression of NADPH oxidase, superoxide dismutase (SOD) and endothelial nitric oxide synthase (eNOS). Oxidative stress was assessed in cell cultures of mouse microvessel endothelial cells (MMECs) by fluorescence labelling with dihydroethidium, lucigenin-enhanced chemiluminescence and determining NADPH oxidase subunit and eNOS expression with real-time polymerase chain reaction protocol and Western blotting. Oxidative stress and expression of the NADPH oxidase subunit, p22phox, were both increased, SOD1 and 3 expression lowered and eNOS significantly elevated in MMECs treated with 40 mM glucose for 72 h compared to low glucose medium. Oxidative stress, p22phox mRNA, eNOS mRNA, and protein were lowered by concurrent incubation with sepiapterin. When eNOS protein expression in endothelial cells was significantly decreased by eNOS siRNA treatment, superoxide generation was significantly higher in the MMECs grown in low glucose, but reduced in those grown in high glucose for 72 h. Thus, exposure of MMECs to high glucose results in increased oxidative stress that is associated with increased eNOS and NADPH oxidase subunit expression, notably p22phox, and decreased expression of SOD1 and 3.  相似文献   

2.
Hong H  Lu Y  Ji ZN  Liu GQ 《Journal of neurochemistry》2006,98(5):1465-1473
Glutathione (GSH) depletion has been implicated in the pathogenesis of neurological diseases. During GSH depletion, cells of the blood-brain barrier (BBB) are subjected to chronic oxidative stress. In this study, we investigated the effect of such stress, produced with the GSH synthesis inhibitor l-buthionine-(S,R)-sulfoximine (BSO), on expression of P-glycoprotein (Pgp) in primary cultured rat brain microvessel endothelial cells that comprise the blood-brain barrier (BBB). Application of BSO to cell monolayers at concentrations up to 800 microm caused increases in expression of Pgp. Concentrations >or= 400 microm BSO decreased cell viability. Application of 200 microm BSO caused a significant increase in Pgp function activity, as assessed by rhodamine 123 (Rh123) accumulation experiments. At this concentration, BSO produced time-dependent decreases in levels of intracellular GSH and increases in levels of intracellular reactive oxygen species (iROS). The increases were also observed within 48 h following BSO treatment in mdr1a and mdr1b mRNA. Exposure of cells to BSO for 24 h produced maximal effects in the accumulation of iROS, and in expression and function of Pgp. The ROS scavenger N-acetylcysteine prevented ROS generation and attenuated the changes of both expression and activity of Pgp induced by BSO. Therefore, the transport of Pgp substrates may be affected by changing Pgp expression under conditions of chronic oxidative stress induced by GSH depletion.  相似文献   

3.
Many studies have suggested that endothelial cells can act as "oxygen sensors" to large reductions in oxygen availability by increasing nitric oxide (NO) production. This study determined whether small reductions in oxygen availability enhanced NO production from in vivo intestinal arterioles, venules, and parenchymal cells. In vivo measurements of perivascular NO concentration ([NO]) were made with NO-sensitive microelectrodes during normoxic and reduced oxygen availability. During normoxia, intestinal first-order arteriolar [NO] was 397 +/- 26 nM (n = 5), paired venular [NO] was 298 +/- 34 nM (n = 5), and parenchymal cell [NO] was 138 +/- 36 nM (n = 3). During reduced oxygen availability, arteriolar and venular [NO] significantly increased to 695 +/- 79 nM (n = 5) and 534 +/- 66 nM (n = 5), respectively, whereas parenchymal [NO] remained unchanged at 144 +/- 34 nM (n = 4). During reduced oxygenation, arteriolar and venular diameters increased by 15 +/- 3% and 14 +/- 5%, respectively: NG-nitro-L-arginine methyl ester strongly suppressed the dilation to lower periarteriolar Po2. Micropipette injection of a CO2 embolus into arterioles significantly attenuated arteriolar dilation and suppressed NO release in response to reduced oxygen availability. These results indicated that in rat intestine, reduced oxygen availability increased both arteriolar and venular NO and that the main site of NO release under these conditions was from endothelial cells.  相似文献   

4.
The loss of endothelial function is the initiating factor in the development of diabetic vascular disease. Kinins control endothelial function by the activation of two receptors: the B2 which is constitutively expressed, and the B1 which is highly induced in pathological conditions. In the present study, we observed that the levels of B1-receptor mRNA and protein are induced in endothelial cells incubated in high glucose. An increase in B1-receptor was also observed in the endothelial layer of aortas, from 4-week diabetic rats. When cells were grown in high glucose, the B1 agonist des-Arg9-BK increased nitrite levels, whereas in normal glucose nitrite levels were unchanged. Nitrite increase was blocked by L-NAME and 1400W indicating the participation of the inducible Nitric Oxide Synthase (iNOS). iNOS protein levels were also increased in high glucose. These results demonstrate the participation of the B1 receptor in the signaling pathways mediated by kinins in high glucose.  相似文献   

5.
6.
May JM  Qu ZC  Li X 《Free radical research》2004,38(6):581-589
Nitrite is a breakdown product of nitric oxide that in turn is oxidized to nitrate in cells. In this work, we investigated whether reactive oxidant species might be generated during nitrite metabolism in cultured EA.hy926 endothelial cells. Nitrite was taken up by the cells in a time- and concentration-dependent manner and oxidized to nitrate, which accumulated in cells to concentrations almost 10-fold those of nitrite. Conversion of low millimolar concentrations of nitrite to nitrate was associated with increased oxidant stress in the cells. This manifested as increased oxidation of dihydrofluorescein in tandem with depletion of both GSH and ascorbate. Further, loading cells with ascorbate or treatment with desferrioxamine prevented nitrite-induced dihydrofluorescein oxidation. Nitrite within cells also increased the fluorescence of 4-amino-5-methylamino-2',7'-difluorofluorescein and inhibited the activity of cellular glyceraldehyde 3-phosphate dehydrogenase, which are markers of intracellular nitrosation reactions. Intracellular ascorbate partially prevented both of these effects of nitrite. Although ascorbate can reduce nitrite to nitric oxide at low pH, in endothelial cells loaded with ascorbate, its predominant effect at high nitrite concentrations is to prevent potentially damaging nitrosation reactions.  相似文献   

7.
Placental blood flow, endothelial nitric oxide (NO) production, and endothelial cell nitric oxide synthase (eNOS) expression increase during pregnancy. Shear stress, the frictional force exerted on endothelial cells by blood flow, stimulates vessel dilation, endothelial NO production, and eNOS expression. In order to study the effects of pulsatile flow/shear stress, we adapted Cellco CELLMAX artificial capillary modules to study ovine fetoplacental artery endothelial (OFPAE) cells for NO production and eNOS expression. OFPAE cells were grown in the artificial capillary modules at 3 dynes/cm2. Confluent cells were then exposed to 10, 15, or 25 dynes/cm2 for up to 24 h. NO production by OFPAE cells exposed to pulsatile shear stress was inhibited to nondetectable levels by the NOS inhibitor l-NMMA and reversed by excess NOS substrate l-arginine. NO production and expression of eNOS mRNA and protein by OFPAE cells were elevated by shear stress in a graded fashion (P < 0.05). The rise in NO production with 25 dynes/cm2 shear stress (8-fold) was greater (P < 0.05) than that observed for eNOS protein (3.6-fold) or eNOS mRNA (1.5-fold). The acute shear stress-induced rise in NO production by OFPAE cells was via eNOS activation, whereas the prolonged NO rise occurred by elevations in both eNOS expression and enzyme activation. Thus, elevations of placental blood flow and physiologic shear stress may be partly responsible for the increases in placental arterial endothelial eNOS expression and NO production during pregnancy.  相似文献   

8.
Nicotinamide N‐methyltransferase (NNMT) plays a central role in cellular metabolism, regulating pathways including epigenetic regulation, cell signalling, and energy production. Our previous studies have shown that the expression of NNMT in the human neuroblastoma cell line SH‐SY5Y increased complex I activity and subsequent ATP synthesis. This increase in ATP synthesis was lower than the increase in complex I activity, suggesting uncoupling of the mitochondrial respiratory chain. We, therefore, hypothesised that pathways that reduce oxidative stress are also increased in NNMT‐expressing SH‐Y5Y cells. The expression of uncoupling protein‐2 messenger RNA and protein were significantly increased in NNMT‐expressing cells (57% ± 5.2% and 20.1% ± 1.5%, respectively; P = .001 for both). Total GSH (22 ± 0.3 vs 35.6 ± 1.1 nmol/mg protein), free GSH (21.9 ± 0.2 vs 33.5 ± 1 nmol/mg protein), and GSSG (0.6 ± 0.02 vs 1 ± 0.05 nmol/mg protein; P = .001 for all) concentrations were significantly increased in NNMT‐expressing cells, whereas the GSH:GSSG ratio was decreased (39.4 ± 1.8 vs 32.3 ± 2.5; P = .02). Finally, reactive oxygen species (ROS) content was decreased in NNMT‐expressing cells (0.3 ± 0.08 vs 0.12 ± 0.03; P = .039), as was the concentration of 8‐isoprostane F2α (200 ± 11.5 vs 45 ± 2.6 pg/mg protein; P = .0012). Taken together, these results suggest that NNMT expression reduced ROS generation and subsequent lipid peroxidation by uncoupling the mitochondrial membrane potential and increasing GSH buffering capacity, most likely to compensate for increased complex I activity and ATP production.  相似文献   

9.
10.
In this study, we explore the roles of the delta isoform of PKC (PKCdelta) in the regulation of endothelial nitric oxide synthase (eNOS) activity in pulmonary arterial endothelial cells isolated from fetal lambs (FPAECs). Pharmacological inhibition of PKCdelta with either rottlerin or with the peptide, deltaV1-1, acutely attenuated NO production, and this was associated with a decrease in phosphorylation of eNOS at Ser1177 (S1177). The chronic effects of PKCdelta inhibition using either rottlerin or the overexpression of a dominant negative PKCdelta mutant included the downregulation of eNOS gene expression that was manifested by a decrease in both eNOS promoter activity and protein expression after 24 h of treatment. We also found that PKCdelta inhibition blunted Akt activation as observed by a reduction in phosphorylated Akt at position Ser473. Thus, we conclude that PKCdelta is actively involved in the activation of Akt. To determine the effect of Akt on eNOS signaling, we overexpressed a dominant negative mutant of Akt and determined its effect of NO generation, eNOS expression, and phosphorylation of eNOS at S1177. Our results demonstrated that Akt inhibition was associated with decreased NO production that correlated with reduced phosphorylation of eNOS at S1177, and decreased eNOS promoter activity. We next evaluated the effect of endogenously produced NO on eNOS expression by incubating FPAECs with the eNOS inhibitor 2-ethyl-2-thiopseudourea (ETU). ETU significantly inhibited NO production, eNOS promoter activity, and eNOS protein levels. Together, our data indicate involvement of PKCdelta-mediated Akt activation and NO generation in maintaining eNOS expression.  相似文献   

11.
Glutaredoxin belongs to the oxidoreductase family, with cytosolic glutaredoxin 1 (Grx1) and mitochondrial glutaredoxin 2 (Grx2) isoforms. Of the two isozymes, the function of Grx2 is not well understood. This paper describes the effects of Grx2 deletion on cellular function using primary lens epithelial cell cultures isolated from Grx2 gene knockout (KO) and wild-type (WT) mice. We found that both cell types showed similar growth patterns and morphology and comparable mitochondrial glutathione pool and complex I activity. Cells with deleted Grx2 did not show affected Grx1 or thioredoxin expression but exhibited high sensitivity to oxidative stress. Under treatment with H(2)O(2), the KO cells showed less viability, higher membrane leakage, enhanced ATP loss and complex I inactivation, and weakened ability to detoxify H(2)O(2) in comparison with the WT cells. The KO cells had higher glutathionylation in the mitochondrial proteins, particularly the 75-kDa subunit of complex I. Recombinant Grx2 deglutathionylated complex I and restored most of its activity. We conclude that Grx2 has a function that protects cells against H(2)O(2)-induced injury via its peroxidase and dethiolase activities; particularly, Grx2 prevents complex I inactivation and preserves mitochondrial function.  相似文献   

12.
13.
Endothelial dysfunction is a major contributor to cardiovascular disease (CVD), particularly in elderly people. Studies have demonstrated the role of glycation in endothelial dysfunction in nonphysiological models, but the physiological role of glycation in age‐related endothelial dysfunction has been poorly addressed. Here, to investigate how vascular glycation affects age‐related endothelial function, we employed rats systemically overexpressing glyoxalase I (GLO1), which detoxifies methylglyoxal (MG), a representative precursor of glycation. Four groups of rats were examined, namely young (13 weeks old), mid‐age (53 weeks old) wild‐type, and GLO1 transgenic (WT/GLO1 Tg) rats. Age‐related acceleration in glycation was attenuated in GLO1 Tg rats, together with lower aortic carboxymethyllysine (CML) and urinary 8‐hydroxydeoxyguanosine (8‐OHdG) levels. Age‐related impairment of endothelium‐dependent vasorelaxation was attenuated in GLO1 Tg rats, whereas endothelium‐independent vasorelaxation was not different between WT and GLO1 Tg rats. Nitric oxide (NO) production was decreased in mid‐age WT rats, but not in mid‐age GLO1 Tg rats. Age‐related inactivation of endothelial NO synthase (eNOS) due to phosphorylation of eNOS on Thr495 and dephosphorylation on Ser1177 was ameliorated in GLO1 Tg rats. In vitro, MG increased phosphorylation of eNOS (Thr495) in primary human aortic endothelial cells (HAECs), and overexpression of GLO1 decreased glycative stress and phosphorylation of eNOS (Thr495). Together, GLO1 reduced age‐related endothelial glycative and oxidative stress, altered phohphorylation of eNOS, and attenuated endothelial dysfunction. As a molecular mechanism, GLO1 lessened inhibitory phosphorylation of eNOS (Thr495) by reducing glycative stress. Our study demonstrates that blunting glycative stress prevents the long‐term impact of endothelial dysfunction on vascular aging.  相似文献   

14.
15.
Osteopontin (OPN) is an important mediator of inflammation and is involved in the generation of atherosclerotic lesions. Oxidized LDL (OxLDL) increased the intracellular and secreted levels of OPN in rat smooth muscle cells in a dose- and time-dependent manner. Experiments with kinase inhibitors demonstrated that this effect was mediated by ERK and JNK, but not p38. OxLDL induced oxidative stress, measured by the intracellular levels of reactive oxygen species (ROS) and lipid peroxidation products. The increase in OPN levels was reproduced by the lipid extract of the particle and prevented by the antioxidant vitamin E. Furthermore, ROS generated by UVA irradiation or treatment with pro-oxidant compounds such as buthionine sulfoximine or H2O2 also enhanced intracellular and secreted OPN. Finally, OxLDL also augmented OPN levels in other cell types such as fibroblasts, keratinocytes, and endothelial cells. This work demonstrates the role of OxLDL in the expression of the OPN gene and further highlights the role of oxidative stress in the regulation of this cytokine. This might be related to the proinflammatory effects of OxLDL in the initiation and progression of atherosclerotic plaque.  相似文献   

16.
Nitric oxide (NO) exerts a wide range of its biological properties via its interaction with mitochondria. By competing with O(2), physiologically relevant concentrations of NO reversibly inhibit cytochrome oxidase and decrease O(2) consumption, in a manner resembling a pharmacological competitive antagonism. The inhibition regulates many cellular functions, by e.g., regulating the synthesis of ATP and the formation of mitochondrial transmembrane potential (Delta Psi). NO regulates the oxygen consumption of both the NO-producing and the neighboring cells; thus, it can serve as autoregulator and paracrine modulator of the respiration. On the other hand, NO reacts avidly with superoxide anion (O(2)(-)) to produce the powerful oxidizing agent, peroxynitrite (ONOO(-)) which affects mitochondrial functions mostly in an irreversible manner. How mitochondria and cells harmonize the reversible effects of NO versus the irreversible effects of ONOO(-) will be discussed in this review article. The exciting recent finding of mitochondrial NO synthase will also be discussed.  相似文献   

17.
There is an increase in the generation of reactive oxygen species and nitric oxide in the cerebral microcirculation in Alzheimer's disease. The factors that cause this increase in oxidative stress have not been identified. Increasing evidence suggests that there are common mechanisms in atherosclerosis and Alzheimer's disease. The objective of this study was to determine the effects of oxidized low density lipoproteins (LDLs) on brain endothelial cells. Cultured rat brain endothelial cells were treated with either native LDL (10 microg/ml) or LDL oxidized in vitro using 4-hydroxy-2-nonenal (HNE-LDL) (10 microg/ml), for 24h. The results showed that HNE-LDL significantly increased production of nitric oxide (p<0.01), decreased membrane fluidity (p<0.05), and increased reactive oxygen species generation (p<0.01). These data demonstrate that oxidized LDLs affect nitric oxide and radical generation in brain endothelial cells and could contribute to cerebrovascular dysfunction in Alzheimer's disease.  相似文献   

18.
To determine if short‐term calorie restriction reverses vascular endothelial dysfunction in old mice, old (O, n = 30) and young (Y, n = 10) male B6D2F1 mice were fed ad libitum (AL) or calorie restricted (CR, approximately 30%) for 8 weeks. Ex vivo carotid artery endothelium‐dependent dilation (EDD) was impaired in old ad libitum (OAL) vs. young ad libitum (YAL) (74 ± 5 vs. 95 ± 2% of maximum dilation, P < 0.05), whereas old calorie‐restricted (OCR) and YCR did not differ (96 ± 1 vs. 94 ± 3%). Impaired EDD in OAL was mediated by reduced nitric oxide (NO) bioavailability associated with decreased endothelial NO synthase expression (aorta) (P < 0.05), both of which were restored in OCR. Nitrotyrosine, a cellular marker of oxidant modification, was markedly elevated in OAL (P < 0.05), whereas OCR was similar to Y. Aortic superoxide production was 150% greater in OAL vs. YAL (P < 0.05), but normalized in OCR, and TEMPOL, a superoxide dismutase (SOD) mimetic that restored EDD in OAL (to 97 ± 2%), had no effect in Y or OCR. OAL had increased expression and activity of the oxidant enzyme, NADPH oxidase, and its inhibition (apocynin) improved EDD, whereas NADPH oxidase in OCR was similar to Y. Manganese SOD activity and sirtuin1 expression were reduced in OAL (P < 0.05), but restored to Y in OCR. Inflammatory cytokines were greater in OAL vs. YAL (P < 0.05), but unaffected by CR. Carotid artery endothelium‐independent dilation did not differ among groups. Short‐term CR initiated in old age reverses age‐associated vascular endothelial dysfunction by restoring NO bioavailability, reducing oxidative stress (via reduced NADPH oxidase–mediated superoxide production and stimulation of anti‐oxidant enzyme activity), and upregulation of sirtuin‐1.  相似文献   

19.
Nitric oxide (NO) is produced by NO synthase (NOS) from L-arginine (L-Arg). Alternatively, L-Arg can be metabolized by arginase to produce L-ornithine and urea. Arginase (AR) exists in two isoforms, ARI and ARII. We hypothesized that inhibiting AR with L-valine (L-Val) would increase NO production in bovine pulmonary arterial endothelial cells (bPAEC). bPAEC were grown to confluence in either regular medium (EGM; control) or EGM with lipopolysaccharide and tumor necrosis factor-alpha (L/T) added. Treatment of bPAEC with L/T resulted in greater ARI protein expression and ARII mRNA expression than in control bPAEC. Addition of L-Val to the medium led to a concentration-dependent decrease in urea production and a concentration-dependent increase in NO production in both control and L/T-treated bPAEC. In a second set of experiments, control and L/T bPAEC were grown in EGM, EGM with 30 mM L-Val, EGM with 10 mM L-Arg, or EGM with both 10 mM L-Arg and 30 mM L-Val. In both control and L/T bPAEC, treatment with L-Val decreased urea production and increased NO production. Treatment with L-Arg increased both urea and NO production. The addition of the combination L-Arg and L-Val decreased urea production compared with the addition of L-Arg alone and increased NO production compared with L-Val alone. These data suggest that competition for intracellular L-Arg by AR may be involved in the regulation of NOS activity in control bPAEC and in response to L/T treatment.  相似文献   

20.
Endothelial dysfunction plays an important role in the development of atherosclerosis. Elastin-derived peptides (EDP), hyperglycemia, hypercholesterolemia and oxidized LDL have a proven proatherosclerotic potential. Nitric oxide generated by endothelial nitric oxide synthase (eNOS; EC 1.14.13.39) is an important vasorelaxant. Here we studied the influence of those proatherosclerotic factors on eNOS gene and protein expression in artery-derived endothelial cells. Human umbilical artery endothelial cells (HUAEC) were incubated with or without: glucose (270 mg/dl), LDL (200 mg/dl), oxidized LDL (oxLDL 25 mg/dl) or κ-elastin (0.5 and 2.5 μg/ml). Gene expression was assessed by real time RT-PCR, whilst the eNOS protein by ELISA. In cells incubated with 2.5 μg/ml of κ-elastin, a 31 % increase of eNOS mRNA expression was observed, but the protein level remained unchanged. OxLDL, LDL and glucose decreased the eNOS protein level by 74 %, 37 % and 29 %, respectively. OxLDL decreased eNOS mRNA by 42 %. LDL non-significantly decreased eNOS mRNA expression. An elevated glucose level did not affect the eNOS mRNA expression. Hyperglycemia and an elevated level of LDL, particularly oxLDL, decreased the level of eNOS protein in endothelial cells. As κ-elastin did not decrease the expression of eNOS gene in HUAEC, the proatherogenic properties of elastin-derived peptides are unlikely to be due to their influence on eNOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号