首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ontogenetic development of caudal vertebrae and associated skeletal elements of salmonids provides information about sequence of ossification and origin of bones that can be considered as a model for other teleosts. The ossification of elements forming the caudal skeleton follows the same sequence, independent of size and age at first appearance. Dermal bones like principal caudal rays ossify earlier than chondral bones; among dermal bones, the middle principal caudal rays ossify before the ventral and dorsal ones. Among chondral bones, the ventral hypural 1 and parhypural ossify first, followed by hypural 2 and by the ventral spine of preural centrum 2. The ossification of the dorsal chondral elements starts later than that of ventral ones. Three elements participate in the formation of a caudal vertebra: paired basidorsal and basiventral arcocentra, chordacentrum, and autocentrum; appearance of cartilaginous arcocentra precedes that of the mineralized basiventral chordacentrum, and that of the perichordal ossification of the autocentrum. Each ural centrum is mainly formed by arcocentral and chordacentrum. The autocentrum is irregularly present or absent. Some ural centra are formed only by a chordacentrum. This pattern of vertebral formation characterizes basal teleosts and primitive extant teleosts such as elopomorphs, osteoglossomorphs, and salmonids. The diural caudal skeleton is redefined as having two independent ural chordacentra plus their arcocentra, or two ural chordacentra plus their autocentra and arococentra, or only two ural chordacentra. A polyural caudal skeleton is identified by more than two ural centra, variably formed as given for the diural condition. The two ural centra of primitive teleosts may result from early fusion of ural centra 1 and 2 and of ural centra 3 and 4, or 3, 4, and 5 (e.g., elopomorphs), respectively. The two centra may corespond to ural centrum 2 and 4 only (e.g., salmonids). Additionally, ural centra 1 and 3 may be lost during the evolution of teleosts. Additional ural centra form late in ontogeny in advanced salmonids, resulting in a secondary polyural caudal skeleton. The hypural, which is a haemal spine of a ural centrum, results by growth and ossification of a single basiventral ural arococentrum and its haemal spine. The proximal part of the hypural always includes part of the ventral ural arcocentrum. The uroneural is a modification of a ural neural arch, which is demonstrated by a cartilaginous precursor. The stegural of salmonids and esocids originates from only one paired cartilaginous dorsal arcocentrum that grows anteriorly by a perichondral basal ossification and an anterodorsal membranous ossification. The true epurals of teleosts are detached neural spines of preural and ural neural arches as shown by developmental series; they are homologous to the neural spines of anterior vertebrae. Free epurals without any indication of connection with the dorsal arococentra are considered herein as an advanced state of the epural. Caudal distal radials originate from the cartilaginous distal portion of neural and haemal spines of preural and ural (epurals and hypurals) vertebrae. Therefore, they result from distal growth of the cartilaginous spines and hypurals. Cartilaginous plates that support rays are the result of modifications of the plates of connective tissue at the posterior end of hypurals (e.g., between hypurals 2 and 3 in salmonids) and first preural haemal spines, or from the distal growth of cartilaginous spines (e.g., epural plates in Thymallus). Among salmonids, conditions of the caudal skeleton such as the progressive loss of cartilaginous portions of the arcocentra, the progressive fusion between the perichondral ossification of arcocentra and autocentra, the broadening of the neural spines, the enlargement and interdigitation of the stegural, and other features provide evidence that Prosopium and Thymallus are the most primitive, and that Oncorhynchus and Salmo are the most advanced salmonids respectively. This interpretation supports the current hypothesis of phylogenetic relationships of salmonids. © 1992 Wiley-Liss, Inc.  相似文献   

2.
The phylogenetic relationships among the three subfamilies (Salmoninae, Coregoninae and Thymallinae) in the Salmonidae have not been addressed extensively at the molecular level. In this study, the whole mitochondrial genomes of two Thymallinae species, Thymallus arcticus and Thymallus thymallus were sequenced, and the published mitochondrial genome sequences of other salmonids were used for Bayesian and maximum‐likelihood phylogenetic analyses. These results support an ancestral Coregoninae, branching within the Salmonidae, with Thymallinae as the sister group to Salmoninae.  相似文献   

3.
The vertebral centra of Hiodon, Elops, and Albula are direct perichordal ossifications (autocentra) which enclose the arcocentra as in Amia. An inner ring of ovoid cells forms in late ontogeny from the intervertebral space inside the autocentrum. The chordacentrum is reduced or completely absent in centra of adult Elops, whereas it forms an important portion of the centra in adult Hiodon. The posterior portion of the compound ural centrum 3+4+5 is partially (Hiodon) or fully formed by the chordacentrum (Elops, Albula). The haemal arches and hypurals are fused medially by cartilage or bone trabecles of the arcocentrum with the centra, even though they appear autogenous in lateral view in Elops and Albula. The composition of the caudal skeleton of fossil teleosts and the ontogeny of that of Hiodon, Elops, and Albula corroborate a one-to-one relationship of ural centra with these dorsal and ventral elements. The first epural (epural 1) of Elops relates to ural centrum 1, whereas the first epural (epural 2) of Hiodon and Albula relates to ural centrum 2. In Albula, the first ural centrum is formed by ural centrum 2 only. With 4 uroneurals Hiodon has the highest number within recent teleosts. Juvenile specimens of Hiodon have eight, the highest number of hypurals within recent teleosts; this is the primitive condition by comparison with other teleosts and pholidophorids. Reduction of elements in the caudal skeleton is an advanced feature as seen within elopomorphs from Elops to Albula. Such reductions and fusions occur in osteoglossomorphs also, but the lack of epurals and uroneurals separates most osteoglossomorphs (except Hiodon) from all other teleosts.  相似文献   

4.
5.

Among fishes, salmonids (family Salmonidae) have attracted a great deal of research attention focused on sexual dimorphism and associated selective forces. Most of this research has been directed toward anadromous and mostly semelparous salmon and trout (Oncorhynchus, Salmo), and comparatively little is known about intersexual variability in strictly iteroparous freshwater salmonids. We examined a comprehensive data set of 28 linear morphometric characters in 11 of 15 currently recognised species of grayling (Thymallinae, Thymallus), a genus consisting of iteroparous species only, to identify general patterns of intersexual morphological variability. Overall, we found that all grayling species show common sex-specific traits particularly relating to size dimensions of the dorsal, anal, pelvic and pectoral fins. Although the magnitude of sexual dimorphism differed among species, there was no significant phylogenetic signal associated with these differences across the genus. These results are discussed in terms of the assumed selection pressures driving sexual dimorphism in graylings and are compared to existing knowledge in Salmonidae as a whole where similarities and differences with both Salmoninae and Coregoninae exist. The present study provides the first detailed genus-wide comparison of sexually dimorphic phenotypic characters in graylings, and highlights the need for more large-scale comparative studies in multiple salmonid species to better understand general macroevolutionary trends among this important group of freshwater fishes.

  相似文献   

6.
7.
The diural caudal skeleton of teleostean actinopterygians develops phylogeneticaily and ontogenetically from a polyural skeleton. The reduction of the polyural anlage to four, three, two or fewer centra in the adult caudal skeleton takes different pathways in different genera (e.g. compare Elops and Albula) and groups of teleosts. As a result, ural centra are not homologous throughout the teleosts. By numbering the ural centra in a homocercal tail in polyural fashion, one can demonstrate these and the following differences. The ventral elements (hypurals) always occur in sequential series, whereas the dorsal elements (epurals and uroneurals) may alter like the ural centra. The number of epurals, five or four in fossil primitive teleosts, is reduced in other primitive and advanced teleosts, but the same epurals are not always lost. The number of uroneurals, seven in fossil teleosts, is reduced in living teleosts, but it has not been demonstrated that the first uroneural is always derived from the neural arch of the same ural centrum. The landmark in the homocercal tail is the preural centrum I which can be identified by (1) bifurcation of the caudal artery and vein in its ventral element, the parhypural, (2) its position directly caudal to the preural centrum (PU2) which supports the lowermost principal caudal ray with its haemal spine, (3) carrying the third hypaxial element ventral to the course of arteria and vena pinnalis, and (4) by carrying the first haemal spine (parhypural) below the dorsal end of the ventral cartilage plate. The study of the development of the vertebral column reveals that teleosts have different patterns of centrum formation. A vertebral centrum is a complete or partial ring of mineralized, cartilaginous or bony material surrounding at least the lateral sides of the notochord. A vertebral centrum may be formed by arcocentrum alone, or arcocentral arcualia and chordacentrum, or arco-, chorda- and autocentrum, or arcocentral arcualia and autocentrum. This preliminary research demonstrates that a detailed ontogenetic interpretation of the vertebral centra and of the caudal skeleton of different teleosts may be useful tools for further interpretations of teleostean interrelationships.  相似文献   

8.
The skeletal morphology of Paraorthacodus jurensis, a Late Jurassic neoselachian from Nusplingen, is described based on the incomplete holotype and a newly discovered almost complete specimen. For the first time, the postcranial skeleton could be investigated. Paraorthacodus is characterized by a monognath dental heterodonty and tearing‐type dentition. The number of lateral cusplets in the lateral teeth differs between the holotype and the new specimen, possibly indicating sexual dimorphism. Clasper organs are not preserved in either of the two specimens. The notochord is sheathed by about 123 well‐calcified vertebral centra. The posterior‐most caudal vertebrae are lacking. The transition from monospondylous thoracic to diplospondylous abdominal vertebrae occurs at centra 48 and 49. The origin of the caudal fin is at the 80th centrum. Most conspicuous is the presence of a single spineless dorsal fin. In this respect, Paraorthacodus differs from most palaeospinacids, but resembles Macrourogaleus. Palidiplospinax possibly is sister to a group comprising Synechodus, Paraorthacodus, and Macrourogaleus (the Palaeospinacidae). A reinterpretation of dental and skeletal characters of synechodontiform taxa indicates that Synechodontiformes and Palaeospinacidae are monophyletic groupings of basal neoselachians. Synechodontiformes is probably sister to all living elasmobranchs.  相似文献   

9.
The response of six species of freshwater fishes, from the families Cyprinidae (common carp Cyprinus carpio, roach Rutilus rutilus and chub Leuciscus cephalus) and Salmonidae (rainbow trout Oncorhynchus mykiss, brown trout Salmo trutta and Arctic charr Salvelinus alpinus), to a standardized stressor was evaluated. A 6 h period of confinement resulted in changes to plasma cortisol, glucose, amino acid and lactate levels compared with unconfined controls. There were significant differences in the response profiles both within and between families. The cyprinid species exhibited higher and more sustained stress‐induced increases in plasma cortisol and glucose than the salmonid species. In cyprinids, plasma lactate and plasma amino acid concentration showed less disturbance following stress than in salmonids. The results of the study, together with an evaluation of previously published data for eight salmonid species and six cyprinid species, support the hypothesis that differences in core elements of the stress response exist between species of fishes, and that this variation may have a systematic basis.  相似文献   

10.
The developmental pattern of the vertebral column and caudal complex in juvenile (16.9 mm SL) to adult (112.2 mm SL)Parexocoetus mento mento is described Juvenile external caudal morphology was similar to the adult condition, although juveniles exhibited various internal ontogenetic changes. Osteological develoment was almost completed at 60–69 mm SL. Complete ossification of the vertebral column and caudal complex appeared to be the optimal condition giving strength for flight. Loss of perforations in the centra, neural and haemal arches may be consistent with the rigid and straightened body position during take-off. Some ontogenetic changes in the caudal complex were related to functional aspects. Ankylosis of the NPU2 spur to the uroneural notch, fusion of hypurals 3+4 and 5 and the elongated hypural 1+2 (lower hypural) were linked to the acquisition of stability and strength in the caudal complex.  相似文献   

11.
The different elements of the caudal skeleton of the South American catfish genera Nematogenys (Nematogenyinae) and Trichomycterus, Hatcheria, and Bullockia (Pygidiinae) (Siluriformes, Trichomycteridae) show Ontogenetic transformation of the second ural centrum in Trichomycteridae separates the subfamilies Nematogenyinae and Pygidiinae. In the former, the second ural centrum is aligned with the first ural centrum in early stages of ontogeny; it is not fused with the bases of hypurals 3 and 4 in any stage of development. In the Pygidiinae, in contrast, the second ural centrum is connected with the base of hypural 3 from an early stage of development on. One of the most noteworthy features of the Pygidiinae is the epural, a polymorphic element with three or four morphotypes that are species specific. The primitive catfish Nematogenys shows intraspecific variation in the ural centra, segmentation of procurrent caudal rays, and principal caudal ray formulae. Species of Trichomycterus, Hatcheria, and Bullockia are characterized by great intraspecific variability that involves ural centra, the epural, hypurapophyses, and the neural arches of the compound centrum. There is intraspecific variation in the fusion of the hypurals in some species of Trichomycterus. Intraspecific variation of the caudal skeleton of fishes of the family Trichomycteridae involves the presence and frequency of different morphotypes of the epural, neural arch of the compound centrum, fusion of hypurals, and principal caudal ray formulae. Ontogenetic changes of the first and second ural centra, hypurapophyses (with the exception of Nematogenys), and segmentation of procurrent caudal rays (in Nematogenys) are involved also.  相似文献   

12.
Phylogenetic relationships among 41 species of salmonid fish and some aspects of their diversification-time history were studied using the GenBank and original mtDNA data. The position of the root of the Salmonidae phylogenetic tree was uncertain. Among the possible variants, the most reasonable seems to be that in which thymallins are grouped into the same clade as coregonins and the lineage of salmonins occupied a basal position relative to this clade. The genera of Salmoninae formed two distinct clades, i.e., (Brachymystax, Hucho) and (Salmo, Parahucho, (Salvelinus, (Parasalmo, Oncorhynchus)). Furthermore, the genera Parasalmo and Oncorhynchus were reciprocally monophyletic. The congruence of Salmonidae phylogenetic trees obtained using different types of phylogenetic markers is discussed. According to Bayesian dating, ancestral lineages of salmonids and their sister esocoids diverged about 106 million years ago. Sometime after, probably 100–70 million years ago, the salmonid-specific whole genome duplication took place. The divergence of salmonid lineages on the genus level occurred much later, within the time interval of 42–20 million years ago. The main wave of the diversification of salmonids at the species level occurred during the last 12 million years. The possible effect of genome duplication on the Salmonidae diversification pattern is discussed.  相似文献   

13.
Summary Photosensitivity in the terminal abdominal ganglion (G5) of an anomuran, the squat lobsterGalathea strigosa (Crustacea, Decapoda, Anomura), is described. In contrast to the caudal photoreceptors (CPRs) of long-tailed natantid and macruran decapod crustaceans, the caudal photosensitive elements in G5 inG. strigosa apparently lack the conventional spiking rostral conduction pathways to the thoracic ganglia, and instead make their output connections to a bilateral pair of tonic flexor motoneurones originating within the caudal ganglion itself. These flexor motoneurones modulate the activity of two bilaterally paired uropod coxopodite tonic flexor muscles. This photomodulated motoneurone (PMMN) activity is not abolished by sectioning the abdominal nerve cord anterior to G5. The pattern of photosensitivity, while differing from that shown by other CPRs, resembles instead the pattern attributed to photosensitive interneurones (PSIs) of rostral abdominal ganglia of crayfish and other long-tailed decapod crustaceans.The caudal PSIs inG. strigosa appear to be involved in the postural control of the tail-fan as it is held flexed against the cephalothorax.  相似文献   

14.
Sauropod haemal arches are caudal bony structures that have been traditionally incorporated into two different types observed in different anatomical views: Y-shaped (anterior view) and forked (lateral view). This research proposes a classification combining information observed in anterior and lateral views. Four types of ‘Y-shaped’ and six types of ‘V-shaped’ chevrons were recognised. Complete chevron series in some eusauropods allows the comparison of topological equivalent structures along the tail and also among taxa. A basal titanosaur from Argentina exhibits mid-caudal chevron morphology in which more than one cranial and caudal process is present, arising from the distal blades as well as from the proximal rami, a condition not seen before in a sauropod dinosaur. The morphological variability seen in sauropod chevrons along the tail is in close relationship with the development and distribution of muscle. caudofemoralis longus, as seen in extant crocodiles and as previously proposed for non-avian theropods and for caudal centra and transverse processes of sauropod dinosaurs. Two new characters related to middle chevrons are proposed here, in which the transitional morphology is described.  相似文献   

15.
The development of all osteological elements, except scales, of the Japanese sardine,Sardinops melanostictus, is described from newly-hatched larvae to adult fishes. Newly-hatched larvae lacked osteological elements. Part of the head skeleton began to develop in 53 hour old larvae (4.2 mm in notochord length [NL]). Larvae at the first-feeding stage (77 hours, 5.5 mm NL) possessed several elements of the head skeleton and pectoral fin supports. In a 10.5 mm NL specimen, part of the caudal and dorsal fin supports were apparent. The centra appeared in specimens 18–22.7 mm in standard length (SL). Gill rakers were first observed in the lower branchial arches at 13 mm NL and spine-like processes with spiny nodules from about 25 mm SL. The distance between the predorsal and first dorsal proximal radial relative to SL rapidly decreased with forward translocation of the dorsal fin and became constant beyond approximately 34 mm SL. At this stage, most basic osteological elements were established. Completion of the osteological structure was characterized by the disappearance of the dentary teeth at 60–70 mm SL. Based on the osteological development, ontogenetic intervals consisting of four periods and eight phases were recognized.  相似文献   

16.
We describe caudosacral and caudal vertebral morphology across life history stages in three caudate amphibians: Ambystoma jeffersonianum (Ambystomatidae), Desmognathus ocoee (Plethodontidae: Desmognathinae), and Hemidactylium scutatum (Plethodontidae: Plethodontinae). All three species have aquatic larvae, but adults differ in habitat and predator defense strategy. Predator defense includes tail autotomy in D. ocoee and H. scutatum but not A. jeffersonianum. Of the species that autotomize, H. scutatum has a specialized constriction site at the tail base. We investigated whether aquatic larvae exhibit vertebral features similar to those previously described for aquatic adults and examined the effect of metamorphosis, if any, on vertebral morphology and the ontogeny of specialized vertebral features associated with tail autotomy. Interspecific comparisons of cleared-and-stained specimens indicate that vertebral morphology differs dramatically at hatching and that caudosacral and caudal vertebrae undergo continuous ontogenetic change throughout larval, metamorphic, and juvenile periods. Larvae and juveniles of H. scutatum do not exhibit adult vertebral features associated with constricted-base tail autotomy. The pond-type larvae of A. jeffersonianum and H. scutatum have tapering centrum lengths posterior to the sacrum. This pattern is functionally associated with aquatic locomotion. The stream-type larvae of D. ocoee undergo enhanced regional growth in the anterior tail such that the anterior caudal centra become longer than the preceding caudosacral centra. With the exception of the first two caudal vertebrae, a similar growth pattern occurs in H. scutatum adults. We hypothesize that enhanced growth of the anterior caudal segments is associated with tail elongation and autotomy.  相似文献   

17.
Osteomyelitis is reported for the first time in a sauropod dinosaur. The material (MCS‐PV 183) comes from the Anacleto Formation (Campanian, Late Cretaceous), at the Cinco Saltos locality, Río Negro Province, Argentina. The specimen consists of 16 mid and mid‐distal caudal vertebrae of a titanosaur sauropod. Evidence of bacterial infection is preserved in all of these vertebrae. The main anomalies are as follows: irregular ‘microbubbly’ texture of bone surfaces produced by periosteal reactive bone, abscesses on the rims of the anterior articular surfaces of two centra, numerous pits on centra anterior articulation surfaces, erosions on the anterior articulation of the vertebral centra, a vertical groove in posterior articular face of all the centra and disruption of the prezygapophysis and postzygapophysis (mainly the articular face) from the vertebra 19 and beyond. The last anomaly is increasingly pronounced in more distal elements of the series. Thin sections reveal that the anomalous cortical tissue is composed of avascular and highly fibrous bone matrix. The fibres of the bone matrix are organized into thick bundles oriented in different directions. Both morphological and histological abnormalities in the MCS‐PV 183 specimen are pathognomonic for osteomyelitis.  相似文献   

18.
Migrations are characterized by periods of movement that typically rely on orientation towards directional cues. Anadromous fish undergo several different forms of oriented movement during their spawning migration and provide some of the most well‐studied examples of migratory behaviour. During the freshwater phase of the migration, fish locate their spawning grounds via olfactory cues. In this review, we synthesize research that explores the role of olfaction during the spawning migration of anadromous fish, most of which focuses on two families: Salmonidae (salmonids) and Petromyzontidae (lampreys). We draw attention to limitations in this research, and highlight potential areas of investigation that will help fill in current knowledge gaps. We also use the information assembled from our review to formulate a new hypothesis for natal homing in salmonids. Our hypothesis posits that migrating adults rely on three types of cues in a hierarchical fashion: imprinted cues (primary), conspecific cues (secondary), and non‐olfactory environmental cues (tertiary). We provide evidence from previous studies that support this hypothesis. We also discuss future directions of research that can test the hypothesis and further our understanding of the spawning migration.  相似文献   

19.
Salmonids are of particular interest to evolutionary biologists due to their incredible diversity of life‐history strategies and the speed at which many salmonid species have diversified. In Switzerland alone, over 30 species of Alpine whitefish from the subfamily Coregoninae have evolved since the last glacial maximum, with species exhibiting a diverse range of morphological and behavioural phenotypes. This, combined with the whole genome duplication which occurred in the ancestor of all salmonids, makes the Alpine whitefish radiation a particularly interesting system in which to study the genetic basis of adaptation and speciation and the impacts of ploidy changes and subsequent rediploidization on genome evolution. Although well‐curated genome assemblies exist for many species within Salmonidae, genomic resources for the subfamily Coregoninae are lacking. To assemble a whitefish reference genome, we carried out PacBio sequencing from one wild‐caught Coregonus sp. “Balchen” from Lake Thun to ~90× coverage. PacBio reads were assembled independently using three different assemblers, falcon , canu and wtdbg2 and subsequently scaffolded with additional Hi‐C data. All three assemblies were highly contiguous, had strong synteny to a previously published Coregonus linkage map, and when mapping additional short‐read data to each of the assemblies, coverage was fairly even across most chromosome‐scale scaffolds. Here, we present the first de novo genome assembly for the Salmonid subfamily Coregoninae. The final 2.2‐Gb wtdbg2 assembly included 40 scaffolds, an N50 of 51.9 Mb and was 93.3% complete for BUSCOs. The assembly consisted of ~52% transposable elements and contained 44,525 genes.  相似文献   

20.
Seinings of the lowland bed of a typical small river of Western Kamchatka demonstrated that of several methods for the census of juveniles of salmonids (Salmonidae) the most accurate result in comparison with complete removal is obtained by three-fold seining with calculation of abundance by the Zippin method. In comparison with a seine, a drive-in trap and electrofishing possess a lower average catching efficiency and a higher selectivity. The average density of fish estimated by the results of seining at the investigated stretch was 0.55–0.57 specimens/m2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号