首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
β-Adrenergic Modulation of Glial Inwardly Rectifying Potassium Channels   总被引:1,自引:0,他引:1  
Abstract: Cultured spinal cord astrocytes (2–13 days in vitro) express several different potassium current types, including delayed rectifier, transient A-type, and inward rectifier (Kir) K+ currents. Of these, Kir is believed to be of critical importance in the modulation of extracellular [K+] in the CNS. Using the whole-cell patch-clamp technique, we analyzed modulation of Kir currents by β-adrenergic receptor activation. The selective β-adrenergic agonist isoproterenol (1–100 µM) and epinephrine (1–100 µM) each reduced peak Kir current amplitudes to 52.7 ± 12.5 and 63.6 ± 7.0%, respectively, at 100 µM. Forskolin (KD of ~25 µM), an activator of adenylate cyclase (AC), and dibutyryl-cyclic AMP (1 mM), a membrane-permeable analogue of cyclic AMP (cAMP), were each used to increase [cAMP]i, the product of AC, and resulted in similar reductions of Kir currents. By contrast, 1,9-dideoxyforskolin (1–50 µM), a forskolin analogue that does not activate AC, did not affect Kir currents, indicating that AC activity is a required element for Kir modulation. Three inhibitors of PKA—Rp-adenosine 3′,5′-cyclic monophosphothioate, H-7, and adenosine 3′,5′-cyclic monophosphate-dependent protein kinase inhibitor—failed to inhibit Kir current reduction by β-adrenergic agonists. These results indicate that β-adrenergic receptor ligands can modulate Kir currents and suggest that this modulation involves activation of AC but not protein kinase A. Such modulation may provide a mechanism by which neurons can modulate glial Kir currents and thereby may affect glial K+“spatial buffering” in the CNS.  相似文献   

2.
Epithelial cell migration plays an important role in gastrointestinal mucosal repair. We previously reported that multiple functional ion channels, including a Ba2+-sensitive K+ inward rectifier Kir1.2, 4-aminopyridine (4-AP)-sensitive voltage-gated K+ channels Kv1.1, Kv1.6 and Kv2.1, and a nifedipine-sensitive, tetrodotoxin (TTX)-insensitive voltage-gated Na+ channel Nav1.5 were expressed in a non-transformed rat gastric epithelial cell line (RGM-1). In the present study, we further investigated whether these ion channels are involved in the modulation of gastric epithelial cell migration. Cell migration was determined by monolayer wound healing assay. Results showed that blockade of Kv with 4-AP or Nav1.5 with nifedipine inhibited RGM-1 cell migration in the absence or presence of epidermal growth factor (EGF), which effectively stimulated RGM-1 cell migration. Moreover, high concentration of TTX mimicked the action of nifedipine, suggesting that the action of nifedipine was mediated through specific blockade of Nav1.5. In contrast, inhibition of Kir1.2 with Ba2+, either in basal or EGF-stimulated condition, had no effect on RGM-1 cell migration. In conclusion, the present study demonstrates for the first time that voltage-gated K+ and Na+ channels are involved in the modulation of gastric epithelial cell migration.  相似文献   

3.
Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cell turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K+ channel (Kir2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of Kir channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca2+ concentration due to Ca2+ influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of Kir2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.  相似文献   

4.
5.
Endothelium lines the interior surface of vascular walls and regulates vascular tones. The endothelial cells sense and respond to chemical and mechanical stimuli in the circulation, and couple the stimulus signals to vascular smooth muscles, in which inward rectifier K+ currents (Kir) play an important role. Here we applied several complementary strategies to determine the Kir subunit in primarily cultured pulmonary arterial endothelial cells (PAECs) that was regulated by the Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII). In whole-cell voltage clamp, the Kir currents were sensitive to micromolar concentrations of extracellular Ba2+. In excised inside-out patches, an inward rectifier K+ current was observed with single-channel conductance 32.43 ± 0.45 pS and Popen 0.27 ± 0.04, which were consistent with known unitary conductance of Kir 2.1. RT-PCR and western blot results showed that expression of Kir 2.1 was significantly stronger than that of other subtypes in PAECs. Pharmacological analysis of the Kir currents demonstrated that insensitivity to intracellular ATP, pinacidil, glibenclamide, pH, GDP-β-S and choleratoxin suggested that currents weren’t determined by KATP, Kir2.3, Kir2.4 and Kir3.x. The currents were strongly suppressed by exposure to CaMKII inhibitor W-7 and KN-62. The expression of Kir2.1 was inhibited by knocking down CaMKII. Consistently, vasodilation was suppressed by Ba2+, W-7 and KN-62 in isolated and perfused pulmonary arterial rings. These results suggest that the PAECs express an inward rectifier K+ current that is carried dominantly by Kir2.1, and this K+ channel appears to be targeted by CaMKII-dependent intracellular signaling systems.  相似文献   

6.
Single inward rectifier K+ channels were studied in Xenopus laevis embryonic myocytes. We have characterized in detail the channel which is most frequently observed (Kir) although we routinely observe three other smaller current levels with the properties of inward rectifier K+ channels (Kir(0.3), Kir(0.5) and Kir(0.7)). For Kir, slope conductances of inward currents were 10.3, 20.3, and 27.9 pS, in 60, 120 and 200 mM [K+] o respectively. Extracellular Ba2+ blocked the normally high channel activity in a concentration-dependent manner (K A = 7.8 μm, −90 mV). In whole-cell recordings of inward rectifier K+ current, marked voltage dependence of Ba2+ block over the physiological range of potentials was observed. We also examined current rectification. Following step depolarizations to voltages positive to E K , outward currents through Kir channels were not observed even when the cytoplasmic face of excised patches were exposed to Mg2+-free solution at pH 9.1. This was probably also true for Kir(0.3), Kir(0.5) and Kir(0.7) channels. We then examined the possibility of modulation of Kir channel activity and found neither ATP nor GTP-γS had any effect on Kir channel activity when added to the solution perfusing the cytoplasmic face of a patch. Kinetic analysis revealed Kir channels with a single open state (mean dwell time 72 msec) and two closed states (time constants 1.4, 79 msec). These results suggest that the native Kir channels of Xenopus myocytes have similar properties to the cloned strong inward rectifier K+ channels, in terms of conductance, kinetics and barium block but does show some differences in the effects of modulators of channel activity. Furthermore, skeletal muscle may contain either different inward rectifier channels or a single-channel type which can exist in stable subconductance states. Received: 16 September 1996/Revised: 14 March 1997  相似文献   

7.
Telocytes (TCs) with exceptionally long cellular processes of telopodes have been described in human epicardium to act as structural supporting cells in the heart. We examined myocardial chamber‐specific TCs identified in atrial and ventricular fibroblast culture using immunocytochemistry and studied their electrophysiological property by whole‐cell patch clamp. Atrial and ventricular TCs with extended telopodes and alternating podoms and podomers that expressed CD34, c‐Kit and PDGFR‐β were identified. These cells expressed large conductance Ca2+‐activated K+ current (BKCa) and inwardly rectifying K+ current (IKir), but not transient outward K+ current (Ito) and ATP‐sensitive potassium current (KATP). The active channels were functionally competent with demonstrated modulatory response to H2S and transforming growth factor (TGF)‐β1 whereby H2S significantly inhibited the stimulatory effect of TGF‐β1 on current density of both BKCa and IKir. Furthermore, H2S attenuated TGF‐β1‐stimulated KCa1.1/Kv1.1 (encode BKCa) and Kir2.1 (encode IKir) expression in TCs. Our results show that functionally competent K+ channels are present in human atrial and ventricular TCs and their modulation may have significant implications in myocardial physiopathology.  相似文献   

8.
Summary Patch-clamp studies of whole-cell ionic currents were carried out in parietal cells obtained by collagenase digestion of the gastric fundus of the guinea pig stomach. Applications of positive command pulses induced outward currents. The conductance became progressively augmented with increasing command voltages, exhibiting an outwardly rectifying current-voltage relation. The current displayed a slow time course for activation. In contrast, inward currents were activated upon hyperpolarizing voltage applications at more negative potentials than the equilibrium potential to K+ (E K). The inward currents showed time-dependent inactivation and an inwardly rectifying current-voltage relation. Tail currents elicited by voltage steps which had activated either outward or inward currents reversed at nearE K, indicating that both time-dependent and voltagegated currents were due to K+ conductances. Both outward and inward K+ currents were suppressed by extracellular application of Ba2+, but little affected by quinine. Tetraethylammonium inhibited the outward current without impairing the inward current, whereas Cs+ blocked the inward current but not the outward current. The conductance of inward K+ currents, but not outward K+ currents, became larger with increasing extracellular K+ concentration. A Ca2+-mobilizing acid secretagogue, carbachol, and a Ca2+ ionophore, ionomycin, brought about activation of another type of outward K+ currents and voltage-independent cation currents. Both currents were abolished by cytosolic Ca2+ chelation. Quinine preferentially inhibited this K+ current. It is concluded that resting parietal cells of the guinea pig have two distinct types of voltage-dependent K+ channels, inward rectifier and outward rectifier, and that the cells have Ca2+-activated K+ channels which might be involved in acid secretion under stimulation by Ca2+-mobilizing secretagogues.  相似文献   

9.
Whole-cell patch-clamp analysis revealed a resting membrane potential of −60 mV in primary osteoblasts and in the MG-63 osteoblast-like cells. Depolarization-induced action potentials were characterized by duration of 60 ms, a minimal peak-to-peak distance of 180 ms, a threshold value of −20 mV and a repolarization between the spikes to −45 mV. Expressed channels were characterized by application of voltage pulses between −150 mV and 90 mV in 10 mV steps, from a holding potential of −40 mV. Voltages below −60 mV induced an inward current. Depolarizing voltages above −30 mV evoked two currents: (a) a fast activated and inactivated inward current at voltages between −30 and 30 mV, and (b) a delayed-activated outward current that was induced by voltages above −30 mV. Electrophysiological and pharmacological parameters indicated that hyperpolarization activated strongly rectifying K+ (Kir) channels, whereas depolarization activated tetrodotoxin sensitive voltage gated Na+ (Nav) channels as well as delayed, slowly activated, non-inactivating, and tetraethylammonium sensitive voltage gated K+ (Kv) channels. In addition, RT-PCR showed expression of Nav1.3, Nav1.4, Nav1.5, Nav1.6, Nav1.7, and Kir2.1, Kir2.3, and Kir2.4 as well as Kv2.1. We conclude that osteoblasts express channels that allow firing of action potentials.  相似文献   

10.
11.
H. Stoeckel  K. Takeda 《Protoplasma》2002,220(1-2):0079-0087
Summary.  Plasmalemmal ionic currents from enzymatically isolated protoplasts of suspension-cultured tobacco ‘Bright Yellow-2’ cells were investigated by whole-cell patch-clamp techniques. In all protoplasts, delayed rectifier outward K+ currents having sigmoidal activation kinetics, no inactivation, and very slow deactivation kinetics were activated by step depolarization. Tail current reversal potentials were close to equilibrium potential EK when external [K+] was either 6 or 60 mM. Several channel blockers, including external Ba2+, niflumic acid, and 5-nitro-2-(3-phenylpropylamino)-benzoic acid, inhibited this outward K+ current. Among the monovalent cations tested (NH4 +, Rb+, Li+, Na+), only Rb+ had appreciable permeation (PRb/PK = 0.7). In addition, in 60 mM K+ solutions, a hyperpolarization-activated, time-dependent, inwardly rectifying K+ current was observed in most protoplasts. This inward current activated very slowly, did not inactivate, and deactivated quickly upon repolarization. The tail current reversal potential was very close to EK, and other monovalent cations (NH4 +, Rb+, Li+, Na+) were not permeant. The inward current was blocked by external Ba2+ and niflumic acid. External Cs+ reversibly blocked the inward current without affecting the outward current. The amplitude of the inward rectifier K+ current was generally small compared to the amplitude of the outward K+ current in the same cell, although this was highly variable. Similar amplitudes for both currents occurred in only 4% of the protoplasts in control conditions. Microfilament-depolymerizing drugs shifted this proportion to about 12%, suggesting that microfilaments participate in the regulation of K+ currents in tobacco ‘Bright Yellow-2’ cells. Received December 7, 2001; accepted April 15, 2002; published online July 4, 2002 RID="*" ID="*" Correspondence and reprints: Pharmacologie et Physicochimie, UMR CNRS 7034, Faculté de Pharmacie, Université Louis Pasteur, 74 route du Rhin, BP 24, 67401 Illkirch, France. Abbreviations: TBY-2 Tobacco ‘Bright Yellow-2’; DHCB dihydrocytochalasin B; IKin inward rectifier K+ current; IKout outward K+ current; MFs microfilaments; MTs microtubules; NPPB 5-nitro-2-(3-phenylpropylamino)-benzoic acid.  相似文献   

12.
13.
Our previous study demonstrated that a large-conductance Ca2+-activated K+ current (BKCa), a voltage-gated TTX-sensitive sodium current (INa.TTX), and an inward rectifier K+ current (IKir) were heterogeneously present in most of human cardiac c-kit+ progenitor cells. The present study was designed to investigate the effects of these ion channels on cell cycling progression and migration of human cardiac c-kit+ progenitor cells with approaches of cell proliferation and mobility assays, siRNA, RT-PCR, Western blots, flow cytometry analysis, etc. It was found that inhibition of BKCa with paxilline, but not INa.TTX with tetrodotoxin, decreased both cell proliferation and migration. Inhibition of IKir with Ba2+ had no effect on cell proliferation, while enhanced cell mobility. Silencing KCa.1.1 reduced cell proliferation by accumulating the cells at G0/G1 phase and decreased cell mobility. Interestingly, silencing Kir2.1 increased the cell migration without affecting cell cycling progression. These results demonstrate the novel information that blockade or silence of BKCa channels, but not INa.TTX channels, decreases cell cycling progression and mobility, whereas inhibition of Kir2.1 channels increases cell mobility without affecting cell cycling progression in human cardiac c-kit+ progenitor cells.  相似文献   

14.
Summary Ionic conductances of rabbit osteoclasts were investigated using both whole-cell and cell-attached configurations of the patch-clamp recording technique. The predominant conductance found in these cells was an inwardly rectifying K+ conductance. Whole-cell currents showed an N-shaped current-voltage (I–13;V) relation with inward current activated at potentials negative to EK. When external K+ was varied, I-V curves shifted 53 mV/10-fold change in [K+]out, as predicted for a K+-selective channel. Inward current was blocked by Ba2+ and showed a time-dependent decline at negative potentials, which was reduced in Na+-free external solution. Inward single-channel currents were recorded in the cell-attached configuration. Single-channel currents were identified as inward-rectifier K+ channels based on the following observations: (i) Unitary I-V relations rectified, with only inward current resolved. (ii) Unitary conductance () was 31 pS when recorded in the cell-attached configuration with 140 mm K+ in the pipette and was found to be dependent on [K+]. (iii) Addition of Ba2+ to the pipette solution abolished single-channel events. We conclude that rabbit osteoclasts possess inwardly rectifying K+ channels which give rise to the inward current recorded at negative potentials in the whole-cell configuration. This inwardly rectifying K+ current may be responsible for setting the resting membrane potential and for dissipating electrical potential differences which arise from electrogenic transport of protons across the osteoclast ruffled border.This work was supported by The Arthritis Society and the Medical Research Council of Canada. M.E.M.K. was supported by a fellowship, S.J.D. a development Grant and S.M.S. a scholarship from the Medical Research Council. We thank Dr. Zu Gang Zheng for help with scanning microscopy.  相似文献   

15.
Gerhard Thiel  Ralf Weise 《Planta》1999,208(1):38-45
Potassium is taken up by maize (Zea mays L.) coleoptile cells via a typical plant inward rectifier (K ir ). Sufficient conductance of this channel is essential in order to maintain auxin-stimulated cell elongation. It was therefore investigated whether the activity of this channel is subject to direct or indirect control by this growth hormone. Patch-clamp measurements of whole coleoptile protoplasts revealed no appreciable effect of externally applied 10 μM or 100 μM α-naphthaleneacetic acid (NAA) on the activity of K ir over test periods of ≥ 18 or ≥ 8 min, respectively. When, however, K ir was recorded in the cell-attached configiuration and 10 μM NAA administered to the bath medium, the conductance of K ir increased significantly in 13 out of 18 protoplasts over the control. This rise occurred at a fixed protoplast voltage after a lag period of less than 10 min and exhibited no voltage dependency. The absence of response to NAA of protoplasts in the whole-cell configuration indicates that auxin perception and channel control is linked via a soluble cytoplasmic factor and that this mediator is washed out or modified upon perfusion of the cytoplasm with pipette solution. To search for this expected diffusible factor the K ir current was recorded before and after elevation of Ca2+ and H+ in the cytoplasm. In the whole-cell configuration the increase in Ca2+ from a nanomolar value to >1 μM by means of Ca2+-release from the caged precursor Na2-DM-nitrophen left K ir unaffected. The whole-cell K ir conductance was also not affected upon addition of 10 mM Na+-acetate to the bath medium, an operation used to lower the cytoplasmic pH. This excludes a primary role for the known auxin-evoked rise in cytoplasmic Ca2+ and H+ in K ir activity. We postulate that another, as yet unknown, mechanism mediates the auxin-evoked stimulation of the number of active K ir channels in the plasma membrane. Received: 13 May 1998 / Accepted: 9 November 1998  相似文献   

16.
17.
18.
Summary The outer membranes of plant cells contain channels which are highly selective for K+. In the giant-celled green algaChara corallina, K+ currents in the plasmalemma were measured during the action potential and when the cell was depolarized to the K+ equilibrium potential in high external K+ concentrations. Currents in both conditions were reduced by externally added tetraethylammonium (TEA+), Ba2+, Na+ and Cs+. In contrast to inhibition by TEA+, the latter three ions inhibited inward K+ current in a voltage-dependent manner, and reduced inward current more than outward. Ba2+ and Na+ also appeared to inhibit outward current in a strongly voltage-dependent manner. The blockade by Cs+ is studied in more detail in the following paper. TEA+ inhibited both inward and outward currents in a largely voltage-independent manner, with an apparentK D of about 0.7 to 1.1mm, increasing with increasing external K+. All inhibitors reduced current towards a similar linear leak, suggesting an insensitivity of the background leak inChara to these various K+ channel inhibitors. The selectivity of the channel to various monovalent cations varied depending on the method of measurement, suggesting that ion movement through the K+-selective channel may not be independent.  相似文献   

19.
Summary K+ channels in cultured rat pancreatic islet cells have been studied using patch-clamp single-channel recording techniques in cell-attached and excised inside-out and outside-out membrane patches. Three different K+-selective channels have been found. Two inward rectifier K+ channels with slope conductances of about 4 and 17 pS recorded under quasi-physiological cation gradients (Na+ outside, K+ inside) and maximal conductances recorded in symmetrical K+-rich solutions of about 30 and 75 pS, respectively. A voltage- and calcium-activated K channel was recorded with a slope conductance of about 90 pS under the same conditions and a maximal conductance recorded in symmetrical K+-rich solutions of about 250 pS. Single-channel current recording in the cell-attached conformation revealed a continuous low level of activity in an apparently small number of both the inward rectifier K+ channels. But when membrane patches were excised from the intact cell a much larger number of inward rectifier K+ channels became transiently activated before showing an irreversible decline. In excised patches opening and closing of both the inward rectifier K+ channels were unaffected by voltage, internal Ca2+ or externally applied tetraethyl-ammonium (TEA) but the probability of opening of both inward rectifier K+ channels was reduced by internally applied 1–5mm adenosine-5-triphosphate (ATP). The large K+ channel was not operational in cell-attached membrane patches, but in excised patches it could be activated at negative membrane potentials by 10–7 to 10–6 m internal Ca2+ and blocked by 5–10mm external TEA.  相似文献   

20.
The Ca2+-conducting pathway of myocytes isolated from the cricket lateral oviduct was investigated by means of the whole-cell patch clamp technique. In voltage-clamp configuration, two types of whole cell inward currents were identified. One was voltage-dependent, initially activated at –40 mV and reaching a maximum at 10 mV with the use of 140 mM Cs2+-aspartate in the patch pipette and normal saline in the bath solution. Replacement of the external Ca2+ with Ba2+ slowed the current decay. Increasing the external Ca2+ or Ba2+ concentration increased the amplitude of the inward current and the current–voltage (I–V) relationship was shifted as expected from a screening effect on negative surface charges. The inward current could be carried by Na+ in the absence of extracellular Ca2+. Current carried by Na+ (I Na) was almost completely blocked by the dihydropyridine Ca2+ channel antagonist, nifedipine, suggesting that the I Na is through voltage-dependent L-type Ca2+ channels. The other inward current is voltage-independent and its I–V relationship was linear between –100 mV to 0 mV with a slight inward rectification at more hyperpolarizing membrane potentials when 140 mM Cs+-aspartate and 140 mM Na+-gluconate were used in the patch pipette and in the bath solution, respectively. A similar current was observed even when the external Na+ was replaced with an equimolar amount of K+ or Cs+, or 50 mM Ca2+ or Ba2+. When the osmolarity of the bath solution was reduced by removing mannitol from the bath solution, the inward current became larger at negative potentials. The I–V relationship for the current evoked by the hypotonic solution also showed a linear relationship between –100 mV to 0 mV. Bath application of Gd3+ (10 M) decreased the inward current activated by membrane hyperpolarization. These results clearly indicate that the majority of current activated by a membrane hyperpolarization is through a stretch-activated Ca2+-permeable nonselective cation channel (NSCC). Here, for the first time, we have identified voltage-dependent L-type Ca2+ channel and stretch-activated Ca2+-permeable NSCCs from enzymatically isolated muscle cells of the cricket using the whole-cell patch clamp recording technique.Abbreviations I Ca Ca2+ current - I Na Na+ current - I–V current–voltage - NSCC nonselective cation channel Communicated by G. Heldmaier  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号