首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skeletal muscle regeneration relies on satellite cells, a population of myogenic precursors. Inflammation also plays a determinant role in the process, as upon injury, macrophages are attracted by the damaged myofibers and the activated satellite cells and act as key elements of dynamic muscle supportive stroma. Yet, it is not known how macrophages interact with the more profound stem cells of the satellite cell niche. Here we show that in the presence of a murine macrophage conditioned medium (mMCM) a subpopulation of multipotent cells could be selected and expanded from adult rat muscle. These cells were small, round, poorly adhesive, slow-growing and showed mesenchymal differentiation plasticity. At the same time, mMCM showed clear myogenic capabilities, as experiments with satellite cells mechanically isolated from suspensions of single myofibers showed that the macrophagic factors inhibited their tendency to shift towards adipogenesis. In vivo, intramuscular administrations of concentrated mMCM in a rat model of extensive surgical ablation dramatically improved muscle regeneration. Altogether, these findings suggest that macrophagic factors could be of great help in developing therapeutic protocols with myogenic stem cells.  相似文献   

2.
3.
肌卫星细胞激活和补给的分子调控与肌肉疾病   总被引:3,自引:0,他引:3  
肌卫星细胞(muscle satellite cell,SC)作为生肌干细胞,参与司控生后骨骼肌的生长、修复和维持等重要过程.综述了NO-HGF,Myostatin,Notch等重要信号分子及卫星细胞自身的特殊微环境对SC激活和补给的分子调控机制,希冀将来可以从这两方面入手克服目前临床中肌卫星细胞移植治疗各种骨骼肌疾病的瓶颈.  相似文献   

4.
Satellite cells are quiescent cells located under the basal lamina of skeletal muscle fibers that contribute to muscle growth, maintenance, repair, and regeneration. Mouse satellite cells have been shown to be muscle stem cells that are able to regenerate muscle fibers and self-renew. As human skeletal muscle is also able to regenerate following injury, we assume that the human satellite cell is, like its murine equivalent, a muscle stem cell. In this review, we compare human and mouse satellite cells and highlight their similarities and differences. We discuss gaps in our knowledge of human satellite cells, compared with that of mouse satellite cells, and suggest ways in which we may advance studies on human satellite cells, particularly by finding new markers and attempting to re-create the human satellite cell niche in vitro. (J Histochem Cytochem 58:941–955, 2010)  相似文献   

5.
6.
Muscle stem cells (also called satellite cells or SCs) rely on their local niche for regulatory signals during homeostasis and regeneration. While a number of cell types communicate indirectly through secreted factors, here we focus on the significance of direct contact between SCs and their neighbors. During quiescence, SCs reside under a basal lamina and receive quiescence-promoting signals from their adjacent skeletal myofibers. Upon injury, the composition of the niche changes substantially, enabling the formation of new contacts that mediate proliferation, self-renewal, and differentiation. In this review, we summarize the latest work in understanding cell–cell contact within the satellite cell niche and highlight areas of open questions for future studies.  相似文献   

7.
Adult skeletal muscle has remarkable regenerative potential, which is mainly attributable to a small population of undifferentiated skeletal muscle precursors called satellite cells. These cells reside underneath the basal lamina of skeletal myofibers and can be activated to proliferate, differentiate and fuse to form new muscle tissue. Satellite cells have long been considered promising mediators of therapeutic muscle regeneration. However, in practice, the regenerative function of such cells, which in many cases have been derived or expanded by ex vivo cultures, can be surprisingly low. A recent study from Montarras and colleagues has provided new insights into the requirements for efficient muscle engraftment from purified muscle satellite cells, suggesting possible strategies to enhance their therapeutic potential.  相似文献   

8.
During development and regeneration, directed migration of cells, including neural crest cells, endothelial cells, axonal growth cones and many types of adult stem cells, to specific areas distant from their origin is necessary for their function. We have recently shown that adult skeletal muscle stem cells (satellite cells), once activated by isolation or injury, are a highly motile population with the potential to respond to multiple guidance cues, based on their expression of classical guidance receptors. We show here that, in vivo, differentiated and regenerating myofibers dynamically express a subset of ephrin guidance ligands, as well as Eph receptors. This expression has previously only been examined in the context of muscle-nerve interactions; however, we propose that it might also play a role in satellite cell-mediated muscle repair. Therefore, we investigated whether Eph-ephrin signaling would produce changes in satellite cell directional motility. Using a classical ephrin 'stripe' assay, we found that satellite cells respond to a subset of ephrins with repulsive behavior in vitro; patterning of differentiating myotubes is also parallel to ephrin stripes. This behavior can be replicated in a heterologous in vivo system, the hindbrain of the developing quail, in which neural crest cells are directed in streams to the branchial arches and to the forelimb of the developing quail, where presumptive limb myoblasts emigrate from the somite. We hypothesize that guidance signaling might impact multiple steps in muscle regeneration, including escape from the niche, directed migration to sites of injury, cell-cell interactions among satellite cell progeny, and differentiation and patterning of regenerated muscle.  相似文献   

9.
Satellite cells, the quintessential skeletal muscle stem cells, reside in a specialized local environment whose anatomy changes dynamically during tissue regeneration. The plasticity of this niche is attributable to regulation by the stem cells themselves and to a multitude of functionally diverse cell types. In particular, immune cells, fibrogenic cells, vessel‐associated cells and committed and differentiated cells of the myogenic lineage have emerged as important constituents of the satellite cell niche. Here, we discuss the cellular dynamics during muscle regeneration and how disease can lead to perturbation of these mechanisms. To define the role of cellular components in the muscle stem cell niche is imperative for the development of cell‐based therapies, as well as to better understand the pathobiology of degenerative conditions of the skeletal musculature.  相似文献   

10.
The use of stem cells to repair and replace damaged skeletal muscle cells in chronic, debilitating muscle diseases such as the muscular dystrophies holds great promise. Different stem cell populations, both of embryonic and adult origin display the potential to generate skeletal muscle cells and have been studied in animal models of muscular dystrophy. These include muscle derived satellite cells; bone marrow derived mesenchymal stem cells, muscle or bone marrow side population cells, circulating CD133+ cells and cells derived from blood vessel walls such as mesoangioblasts or pericytes. The design of effective stem cell based therapies requires a detailed understanding of the molecules and signaling pathways which determine myogenic lineage commitment and differentiation. We discuss the great strides that have been made in delineating these pathways and how a better understanding of muscle stem cell biology has the potential to lead to more effective stem cell based therapies for skeletal muscle regeneration for devastating muscle diseases.  相似文献   

11.
12.
Matrix metalloproteases (MMPs) are key regulatory molecules in the formation, remodeling and degradation of extracellular matrix (ECM) components in both physiological and pathological processes in many tissues. In skeletal muscle, MMPs play an important role in the homeostasis and maintenance of myofiber functional integrity by breaking down ECM and regulating skeletal muscle cell migration, differentiation and regeneration. Skeletal muscle satellite cells, a group of quiescent stem cells located between the basement membrane and the plasmalemma of myofibers, are responsible for lifelong maintenance and repairing, which can be activated and as a result migrate underneath the basement membrane to promote regeneration at the injured site. MMPs are able to degrade ECM components, thereby facilitating satellite cell migration and differentiation. This current review will focus on the critical roles of MMPs in skeletal muscle injury and repair, which include satellite cell activation with migration and differentiation. The effect of MMPs on muscle regeneration and fibrous scar tissue formation, as well as therapeutic insights for the future will be explored.Key words: matrix metalloproteinases, skeletal muscle satellite cells, migration, differentiation, regeneration, fibrosis  相似文献   

13.
Matrix metalloproteases (MMPs) are key regulatory molecules in the formation, remodeling, and degradation of extracellular matrix (ECM) components in both physiological and pathological processes in many tissues. In skeletal muscle, MMPs play an important role in the homeostasis and maintenance of myofiber functional integrity by breaking down ECM and regulating skeletal muscle cell migration, differentiation and regeneration. Skeletal muscle satellite cells, a group of quiescent stem cells located between the basement membrane and the plasmalemma of myofibers, are responsible for lifelong maintenance and repairing, which can be activated and as a result migrate underneath the basement membrane to promote regeneration at the injured site. MMPs are able to degrade ECM components, thereby facilitating satellite cell migration and differentiation. This current review will focus on the critical roles of MMPs in skeletal muscle injury and repair, which include satellite cell activation with migration and differentiation. The effect of MMPs on muscle regeneration and fibrous scar tissue formation, as well as therapeutic insights for the future will be explored.  相似文献   

14.
Skeletal muscle has received much attention with regard to developmental origin, control of cell differentiation and regeneration. In this article, early landmarks in skeletal muscle research are reviewed and recent findings on myogenesis are addressed with particular focus on novel regulatory molecules including miRNAs, as well as on the topographical heterogeneity of skeletal muscle origin. The latter has developed into a central theme of keen interest in the past years, particularly since overlaps in genetic and embryological background between head muscle subsets and heart muscle have been described. As embryonic myogenesis and regenerating myofibers employ common molecules, the heterogeneity in embryonic sources from which skeletal muscle groups in the vertebrate body take origin is closely reflected by differences in the susceptibility to particular muscle dystrophies as well as their regeneration potential. In the regeneration chapter of this review the progress that has been made in the field of muscle stem cell biology, with special focus on the satellite cells, is outlined. Satellite cells are considered the most promising source of muscle stem cells possessing a high regenerative potential. We shall discuss recent insights into the heterogeneous nature of these satellite cells not just in terms of their expression profile but also their regeneration potential. Latest findings about the motility of the satellite cell shall also be discussed. Furthermore, we shall outline the impact of an improved understanding of muscle stem cells within their environment, and of satellite cells in particular, on efficient stem cell replacement therapies for muscular dystrophies, putting embryological findings and stem cell approaches into context.  相似文献   

15.
Satellite cells are the major myogenic stem cells residing inside skeletal muscle and are indispensable for muscle regeneration. Satellite cells remain largely quiescent but are rapidly activated in response to muscle injury, and the derived myogenic cells then fuse to repair damaged muscle fibers or form new muscle fibers. However, mechanisms eliciting metabolic activation, an inseparable step for satellite cell activation following muscle injury, have not been defined. We found that a noncanonical Sonic Hedgehog (Shh) pathway is rapidly activated in response to muscle injury, which activates AMPK and induces a Warburg-like glycolysis in satellite cells. AMPKα1 is the dominant AMPKα isoform expressed in satellite cells, and AMPKα1 deficiency in satellite cells impairs their activation and myogenic differentiation during muscle regeneration. Drugs activating noncanonical Shh promote proliferation of satellite cells, which is abolished because of satellite cell-specific AMPKα1 knock-out. Taken together, AMPKα1 is a critical mediator linking noncanonical Shh pathway to Warburg-like glycolysis in satellite cells, which is required for satellite activation and muscle regeneration.  相似文献   

16.
17.
Myogenesis in the embryo and the adult mammal consists of a highly organized and regulated sequence of cellular processes to form or repair muscle tissue that include cell proliferation, migration, and differentiation. Data from cell culture and in vivo experiments implicate both FGFs and HGF as critical regulators of these processes. Both factors require heparan sulfate glycosaminoglycans for signaling from their respective receptors. Since syndecans, a family of cell-surface transmembrane heparan sulfate proteoglycans (HSPGs) are implicated in FGF signaling and skeletal muscle differentiation, we examined the expression of syndecans 1-4 in embryonic, fetal, postnatal, and adult muscle tissue, as well as on primary adult muscle fiber cultures. We show that syndecan-1, -3, and -4 are expressed in developing skeletal muscle tissue and that syndecan-3 and -4 expression is highly restricted in adult skeletal muscle to cells retaining myogenic capacity. These two HSPGs appear to be expressed exclusively and universally on quiescent adult satellite cells in adult skeletal muscle tissue, suggesting a role for HSPGs in satellite cell maintenance or activation. Once activated, all satellite cells maintain expression of syndecan-3 and syndecan-4 for at least 96 h, also implicating these HSPGs in muscle regeneration. Inhibition of HSPG sulfation by treatment of intact myofibers with chlorate results in delayed proliferation and altered MyoD expression, demonstrating that heparan sulfate is required for proper progression of the early satellite cell myogenic program. These data suggest that, in addition to providing potentially useful new markers for satellite cells, syndecan-3 and syndecan-4 may play important regulatory roles in satellite cell maintenance, activation, proliferation, and differentiation during skeletal muscle regeneration.  相似文献   

18.
Wagers AJ  Conboy IM 《Cell》2005,122(5):659-667
Adult skeletal muscle generates force in a controlled and directed manner through the contraction of highly specialized, postmitotic, multinucleated myofibers. Life-long muscle function relies on maintenance and regeneration of myofibers through a highly regulated process beginning with activation of normally quiescent muscle precursor cells and proceeding with formation of proliferating progenitors that fuse to generate differentiated myofibers. In this review, we describe the historical basis and current evidence for the identification of satellite cells as adult muscle stem cells, critically evaluate contributions of other cells to adult myogenesis, and summarize existing data regarding the origins, genetic markers, and molecular regulation of satellite cells in normal, diseased, and aged muscle.  相似文献   

19.
Muscle stem (satellite) cells are relatively resistant to cell‐autonomous aging. Instead, their endogenous signaling profile and regenerative capacity is strongly influenced by the aged P‐Smad3, differentiated niche, and by the aged circulation. With respect to muscle fibers, we previously established that a shift from active Notch to excessive transforming growth factor‐beta (TGF‐β) induces CDK inhibitors in satellite cells, thereby interfering with productive myogenic responses. In contrast, the systemic inhibitor of muscle repair, elevated in old sera, was suggested to be Wnt. Here, we examined the age‐dependent myogenic activity of sera TGF‐β1, and its potential cross‐talk with systemic Wnt. We found that sera TGF‐β1 becomes elevated within aged humans and mice, while systemic Wnt remained undetectable in these species. Wnt also failed to inhibit satellite cell myogenicity, while TGF‐β1 suppressed regenerative potential in a biphasic fashion. Intriguingly, young levels of TGF‐β1 were inhibitory and young sera suppressed myogenesis if TGF‐β1 was activated. Our data suggest that platelet‐derived sera TGF‐β1 levels, or endocrine TGF‐β1 levels, do not explain the age‐dependent inhibition of muscle regeneration by this cytokine. In vivo, TGF‐β neutralizing antibody, or a soluble decoy, failed to reduce systemic TGF‐β1 and rescue myogenesis in old mice. However, muscle regeneration was improved by the systemic delivery of a TGF‐β receptor kinase inhibitor, which attenuated TGF‐β signaling in skeletal muscle. Summarily, these findings argue against the endocrine path of a TGF‐β1‐dependent block on muscle regeneration, identify physiological modalities of age‐imposed changes in TGF‐β1, and introduce new therapeutic strategies for the broad restoration of aged organ repair.  相似文献   

20.
Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Although patients with advanced CHF or CKD often have increased angiotensin II (Ang II) levels and cachexia and Ang II causes skeletal muscle wasting in rodents, the potential effects of Ang II on muscle regeneration are unknown. Muscle regeneration is highly dependent on the ability of a pool of muscle stem cells (satellite cells) to proliferate and to repair damaged myofibers or form new myofibers. Here we show that Ang II reduced skeletal muscle regeneration via inhibition of satellite cell (SC) proliferation. Ang II reduced the number of regenerating myofibers and decreased expression of SC proliferation/differentiation markers (MyoD, myogenin, and active-Notch) after cardiotoxin-induced muscle injury in vivo and in SCs cultured in vitro. Ang II depleted the basal pool of SCs, as detected in Myf5nLacZ/+ mice and by FACS sorting, and this effect was inhibited by Ang II AT1 receptor (AT1R) blockade and in AT1aR-null mice. AT1R was highly expressed in SCs, and Notch activation abrogated the AT1R-mediated antiproliferative effect of Ang II in cultured SCs. In mice that developed CHF postmyocardial infarction, there was skeletal muscle wasting and reduced SC numbers that were inhibited by AT1R blockade. Ang II inhibition of skeletal muscle regeneration via AT1 receptor-dependent suppression of SC Notch and MyoD signaling and proliferation is likely to play an important role in mechanisms leading to cachexia in chronic disease states such as CHF and CKD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号