首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alimentary canal of Daphnia pulex consists of a tube-shaped foregut, a midgut (mesenteron) with an anterior pair of small diverticula, and a short hindgut. The foregut and hindgut are structurally similar. Each is formed by a low cuboidal epithelium 5 mum tall and lined with a chitinous intima. The midgut wall consists of a simple epithelium resting on a thick beaded basal lamina which is surrounded by a spiraling muscularis. Anteriorly the midgut cells are columnar in shape being 30 mum in height each having a basal nucleus, anteriorly concentrated mitochondria and in apical border of long thin microvilli. Posteriorly the midgut cells become progressively shorter so that in the posteriormost region of the midgut the cells are 5 mum tall and cuboidal in shape. The microvilli concomitantly become shorter and thicker. All mesenteron cells contain the usual cytoplasmic organelles. The paired digestive diverticula are simple evaginations of the midgut. The wall of each consists of a simple epithelium of cuboidal cells 25 mum in height, each with a brushed border of long thin microvilli. Enzyme secretion appears to be holocrine in mode and not confined to any one region of the mesenteron though definitely polarized anteriorly. The thin gut muscularis encircles the entire length of the midgut and caeca. Thick and thin filaments appear to be in a 6:1 ratio.  相似文献   

2.
Reconstructions from serial sections reveal that the digestive system consists of a pharynx esophagus, crop, midgut, and rectum. Two main stems from the branched enteral diverticula are connected to the lateral regions of the crop by right rind left arms. Glandular tissue surrounds the enteral diverticula proximally. A strong sphincter separates the crop and midgut, whereas the midgut and rectum are separated by a weak sphincter. Cuboidal epithelium lines the pharynx, esophagus, crop, and rectum, whereas cuboidal and club-shaped epithelia line the midgut. The cuboidal cells possess elongated nuclei and numerous vacuoles, suggesting that absorption takes place in the midgut.  相似文献   

3.
Shatrov, A. B. 2010. Ultrastructure and functional features of midgut of an adult water mite Teutonia cometes (Koch 1837) (Hydrachnidia: Teutoniidae). —Acta Zoologica (Stockholm) 91 : 222–232 The midgut of the adult water mite Teutonia cometes (Koch 1837) (Hydrachnidia: Teutoniidae) was investigated by means of transmission electron microscopy and on semi‐thin sections. The midgut is represented by a blind sac composed of the narrow ventriculus, two proventricular lateral diverticula and three pairs of postventricular caeca. A single‐layered epithelium consists of one type of endodermal digestive cells of quite different shape and size, which may form protrusions into the midgut lumen. The large nuclei are frequently lobed and contain one to three nucleoli. The apical cell membrane forms short scarce microvilli, between their bases the pinocytotic vesicles of unspecific macropinocytosis as well as the narrow pinocytotic canals are formed and immersed into the cell. The intracellular digestion of the food ingested into the midgut after extraintestinal digestion is predominant. The pinocytotic vesicles fuse with small clear vesicles of proposed Golgi origin to form secondary lysosomes. The digestive cells also contain small amounts of rough endoplasmic reticulum, variously structured heterolysosomes, residual materials in the form of both the small electron‐dense bodies and the large variously granulated substances, reserve nutritive materials such as lipid and glycogen, as well as clear vacuoles. Residual materials are obviously extruded from the cells into the gut lumen.  相似文献   

4.
The midgut of Cryptocellus boneti was studied by light and electron microscopy. The epithelia of the diverticula and of the anterior part of the midgut tube are composed of two cell types: digestive and secretory. In contrast, the epithelia of posterior part of the midgut tube and of the stercoral pocket consist of one type of cells only. In some places, parts of the midgut system are connected by an intermediate tissue. Digestive cells are characterized by an apical system of tubules, nutritional vacuoles, and spherites; characteristic features of secretory cells are secretory granules and a prominent rough endoplasmic reticulum. Cells of the midgut tube appear not to be involved in the absorption of food. © 1994 Wiley-Liss, Inc.  相似文献   

5.
The gut of the mite Acarus siro is characterized on the ultrastructural level. It consists of the foregut (pharynx, esophagus), midgut (ventriculus, caeca, colon, intercolon, postcolonic diverticula, postcolon), and hindgut (anal atrium). The gut wall is formed by a single-layered epithelium; only regenerative cells are located basally and these have no contact with the lumen. Eight cell types form the whole gut: (i) simple epithelial cells forming fore- and hindgut; (ii) cells that probably produce the peritrophic membrane; (iii) regenerative cells occurring in the ventriculus, caeca, colon, and intercolon; (iv) spherite cells and (v) digestive cells forming the ventriculus and caeca; (vi) colonic cells and (vii) intercolonic cells; and (viii) cells forming the walls of postcolonic diverticula and postcolon. Spherite and digestive cells change in structure during secretory cycles, which are described and discussed. The cycle of spherite, colonic, and intercolonic cells is terminated by apoptosis. Ingested food is packed into a food bolus surrounded by a single homogeneous peritrophic membrane formed by addition of lamellae that subsequently fuse together. The postcolonic diverticula serve as a shelter for filamentous bacteria, which also are abundant in the intercolon.  相似文献   

6.
Abstract. Species of Helicoradomenia are constantly found at hydrothermal vent sites of the eastern and western Pacific Ocean. The digestive tract of 2 species of the genus was investigated with special focus on the ultrastructure and histochemistry of epithelia and glandular organs. The preoral cavity and foregut epithelia are composed of microvillous main cells, secretory cells producing protein-rich substances, and sensory cells with specialized cilia. The foregut bears a pair of glands with 3 types of extremely long-necked glandular cells surrounded by musculature. Each glandular cell opens directly into the radula pocket without a gland duct. The large radula apparatus consists of pairs of denticulated bars resting on a flexible radular membrane without elaboration of a subradular membrane. The midgut has a narrow, mid-dorsal tract of ciliary cells, but most of the epithelium is composed of digestive cells with a highly developed lysosomal system. The hindgut is lined by ciliated cells and free of glands. The foregut and radula seem to be highly efficient in the capture of relatively large, motile prey. Food contents within the midgut lumen and within some of the large secondary lysosomes indicate a triploblastic metazoan prey of non-cnidarian origin. The digestive tract is not adapted to microvory and there is no indication of a symbiosis with chemoautotrophic bacteria.  相似文献   

7.
The midgut of unfed larvae and adult mites of Platytrombidium fasciatum (C.L. Koch, 1836) and Camerotrombidium pexatum (C.L. Koch, 1937) (Acariformes: Microtrombidiidae) was investigated by electron microscopy. The sac-like midgut occupies the entire body volume, ends blindly and is not divided into functionally differentiated diverticula or caeca. The midgut walls are composed of one type of digestive cell that greatly varies in shape and size. In larvae, the lumen of the midgut is poorly recognizable and its epithelium is loosely organized, although yolk granules are already utilized. In adults, the midgut forms compartments as a result of deep folds of the midgut walls, and the lumen is well distinguished. The epithelium is composed of flat, prismatic or club-like cells, which may contain nutritional vacuoles and residual bodies in various proportions that depend on digestive stages. In both larvae and adult mites, parts of cells may detach from the epithelium and float within the lumen. The cells contain a system of tubules and vesicles of a trans-Golgi network, whereas the apical surface forms microvilli as well as pinocytotic pits and vesicles. Lysosome-like bodies, lipid inclusions and some amount of glycogen particles are also present in the digestive cells. Spherites (concretions) are not found to be a constant component of the digestive cells and in adult mites occur for the most parts in the midgut lumen.  相似文献   

8.
Light and electron microscopy has shown the alimentary canal of Paranthessius to be composed of clearly defined foregut, midgut and hindgut regions. The spacious foregut is cuticle-lined and separated from the midgut by a valve. The midgut epithelium is composed of columnar cells with an apparent secretary/absorptive rôle, and amoeboid cells thought to engulf material from the lumen. The amoeboid cells have large electron-dense central vacuoles containing carbohydrate-and protein-staining material. These cells appear to be sloughed off into the lumen to form part of a faecal pellet. Apart from their digestive rôle the midgut cells store lipid and it is considered possible that they have an osmoregulatory function. The hindgut epithelium cell type, lacks a cuticular layer and is thought to be mainly concerned with absorption. The alimentary canal is surrounded by strands of longitudinal and circular muscle.  相似文献   

9.
Lithobius forficatus (Myriapoda, Chilopoda, Lithobiidae) is a widespread species of centipede that is common across Europe. Its midgut epithelial cells are an important line of defense against toxic substances that originate in food, such as pathogens and metals. Despite this important role, the biology of the midgut epithelium is not well known. Here we describe the ultrastructure of the midgut epithelium, as well as the replacement of degenerated midgut epithelial cells. The midgut epithelium of L. forficatus is composed of digestive, secretory, and regenerative cells. The cytoplasm of digestive cells shows regionalization in organelle distribution, which is consistent with the role of these cells in secretion of enzymes, absorption of nutrients, and accumulation of lipids and glycogen. Secretory cells, which do not reach the luminal surface of the midgut epithelium, possess numerous electron‐dense and electron‐lucent granules and may have an endocrine function. Hemidesmosomes anchor secretory cells to the basal lamina. Regenerative cells play the role of midgut stem cells, as they are able to proliferate and differentiate. Their proliferation occurs in a continuous manner, and their progeny differentiate only into digestive cells. The regeneration of secretory cells was not observed. Mitotic divisions of regenerative cells were confirmed using immunolabeling against BrdU and phosphohistone H3. Hemocytes associate with the midgut epithelium, accumulating between the visceral muscles and beneath the basal lamina of the midgut epithelium. Hemocytes also occur among the digestive cells of the midgut epithelium in animals infected with Rickettsia‐like microorganisms. These hemocytes presumably have an immunoprotective function in the midgut.  相似文献   

10.
Scolopendra cingulata has a tube-shaped digestive system that is divided into three distinct regions: fore-, mid- and hindgut. The midgut is lined with a pseudostratified columnar epithelium which is composed of digestive, secretory and regenerative cells. Hemocytes also appear between the digestive cells of the midgut epithelium. The ultrastructure of three types of epithelial cells and hemocytes of the midgut has been described with the special emphasis on the role of regenerative cells in the protection of midgut epithelium. The process of midgut epithelium regeneration proceeds due to the ability of regenerative cells to proliferate and differentiate according to a circadian rhythm. The regenerative cells serve as unipotent stem cells that divide in an asymmetric manner.Additionally, two types of hemocytes have been distinguished among midgut epithelial cells. They enter the midgut epithelium from the body cavity. Because of the fact that numerous microorganisms occur in the cytoplasm of midgut epithelial cells, we discuss the role of hemocytes in elimination of pathogens from the midgut epithelium. The studies were conducted with the use of transmission electron microscope and immunofluorescent methods.  相似文献   

11.
The ultrastructure of the midgut epithelium and digestion in the female tickArgas (Persicargas) arboreus are described before and after feeding, up to oviposition. The epithelium consists of secretory cells, digestive cells (DI and DII), and regenerative cells which may differentiate into any of the other cell types. In unfed ticks, the midgut wall consists mainly of type DII digestive cells retained from a previous feeding, and a few regenerative cells. Within 3 days after the tick feeding, haemolysis of the host blood components occurs in the midgut lumen. Secretory cells, the first differentiation of the regenerative cells, are presumed to produce a haemolysin and an anticoagulant which are released by merocrine and holocrine secretions. The DII cells seen in unfed ticks, and secretory cells which have completed their secretory cycle, start to have a specialized surface for endocytosis characteristic of type DI digestive cells. From 5 to 7 days after feeding up to the female oviposition, type DI cells which have completed their endocytosis are transformed into type DII digestive cells specialized for intracellular digestion and the storage of reserve nutrients required by the tick for long starvation. The various phases of the digestive cycle are considered according to ultrastructural changes of the midgut epithelium.  相似文献   

12.
The domestic mite species Blomia tropicalis is an important indoor allergen source related to asthma and other allergic diseases in tropical and subtropical regions. Here, we describe the alimentary canal of B. tropicalis with the particular application of three-dimensional reconstruction technology. The alimentary canal of B. tropicalis resembles the typical acarid form consisting of the cuticle-lined foregut and hindgut separated by a cuticle-free midgut. The foregut is divided into a muscular pharynx and an esophagus. The midgut is composed of a central ventriculus, two lateral caeca, a globular colon and a postcolon with two tubiform postcolonic diverticula. The most common cells forming the epithelium of ventriculus and caeca are squamous and cuboidal. The globular cells contain a big central vacuole in the posterior region of the caeca. The epithelium of the colon and postcolon has significantly longer microvilli. The anal atrium is a simple tube with flattened epithelial cells. The spatial measurements of the three-dimensional model suggest that the paired caeca and central ventriculus occupy 55.1 and 34.6%, respectively, of the total volume of the alimentary canal and may play the key role in food digestion. J. Wu and F. Yang contributed equally.  相似文献   

13.
The harvestmen Amilenus aurantiacus overwinter in diapause in hypogean habitats. The midgut diverticula have been studied microscopically (light microscopy, TEM) and biochemically (energy-storing compounds: lipids and glycogen) to analyze changes during this programmed starvation period. Throughout the investigated period, the epithelium of the midgut diverticula is composed of secretory cells, digestive cells and adipocytes. Additionally, after the middle of overwintering, the excretory cells appear, and two assemblages of secretory cells are present: the SC1 secretory cells are characterized by electron-dense cytoplasm with numerous protein granules, and the SC2 cells by an electron-lucent cytoplasm with fewer protein granules. The autophagic activity is observed from the middle of overwintering, indicating its vital role in providing nutrients during this non-feeding period. Lipids and glycogen are present in the midgut diverticula cells, except in the excretory cells. Measurements of the lipid droplet diameters and the lipid quantities yielded quite comparable information on their consumption. Lipids are gradually spent in both sexes, more rapidly in females, owing to ripening of the ovaries. Glycogen rates decrease towards the middle, and increase just before the end of overwintering, indicating that individuals are preparing for the epigean active ecophase.  相似文献   

14.
显微观察发现臭腹腺蝗Zonocerus variegatus(直翅目:锥头蝗科)嗉囊、中肠和后肠的肠壁结构有所不同。嗉囊为空时纵向折叠。中肠上皮层的厚度随龄期有明显变化,1龄和2龄时明显大于3龄、4龄和5龄。后肠具有帮助消化和吸收的功能。  相似文献   

15.
The digestive systems in mammals and Drosophila are quite different in terms of their complexity and organization, but their biological functions are similar. The Drosophila midgut is a functional equivalent of the mouse small intestine. Adult intestinal stem cells (ISCs) have been identified in both the mouse small intestine and Drosophila midgut. The anatomy and cell renewal in the Drosophila midgut are similar to those in the mouse small intestine: the intestinal epithelium in both systems is a tube composed of epithelial cells with absorptive and secretory functions; the Notch signaling controls absorptive versus secretory fate decisions in the intestinal epithelium; cell renewal in both systems starts from stem cells in the basal cell layer, and the differentiated cells then move toward the lumen. However, it is clear that the stem cells in the two systems are regulated in different ways. In this review, we will compare cell renewal and stem cell regulation in the two systems. J. Cell. Physiol. 222:33–37, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Ultrastructural features and structure of the midgut and hindgut of Derocheilocaris remanei were studied. The large endodermal midgut is differentiated into an anterior midgut and a posterior midgut separated by a conspicuous constriction. Both circular and longitudinal striated muscle bands surround the midgut, while the hindgut only presents longitudinal muscles. The limit between the midgut and the cuticle-lined hindgut is marked by a rectal valve. In cross-section, the short hindgut is triradiate and has a distinct Y-shaped lumen. The hindgut cuticular lining appears interrupted at the tip of every branch of the Y. Three different cell types are found in the midgut epithelium: basally located undifferentiated cells that give rise to the other two specialized cell types; secretory zymogen-like cells responsible for extracellular digestion and located mainly in the anterior midgut; and vacuolated cells, distributed all along the midgut and appearing to have several functions, including absorption, intracellular digestion, and nutrient transport. A single basic cell type forms the hindgut epithelium. The suggested function for the hindgut is the transport and ejection of waste products.  相似文献   

17.
采用解剖及石蜡切片显微技术,观察研究了光唇鱼消化道的形态结构特征。消化道由口咽腔、食道、肠构成。口下位、马蹄形,无颌齿,具咽齿,齿式为4/4。舌较小,前端游离,舌粘膜表层为复层鳞状上皮,有较多的杯状细胞和味蕾。食道及肠均由粘膜层、粘膜下层、肌层及外膜构成。食道内皱襞发达,粘膜层有大量杯状细胞。肠道盘曲,由前、中、后肠组成,肠长/体长为1.84±0.24;前肠管腔较大,中、后肠管腔渐变小;前、中肠皱襞及纹状缘比后肠发达;前肠及后肠杯状细胞较少,中肠杯状细胞较多。光唇鱼消化道的形态结构特征与其食性相适应。  相似文献   

18.
The alimentary canal of the spittlebug Lepyronia coleopterata (L.) differentiates into esophagus, filter chamber, midgut (conical segment, tubular midgut), and hindgut (ileum, rectum). The filter chamber is composed of the anterior extremity of the midgut, posterior extremity of the midgut, proximal Malpighian tubules, and proximal ileum; it is externally enveloped by a thin cellular sheath and thick muscle layers. The sac-like anterior extremity of the midgut is coiled around by the posterior extremity of the midgut and proximal Malpighian tubules. The tubular midgut is subdivided into an anterior tubular midgut, mid-midgut, posterior tubular midgut, and distal tubular midgut. Four Malpighian tubules run alongside the ileum, and each terminates in a rod closely attached to the rectum. Ultrastructurally, the esophagus is lined with a cuticle and enveloped by circular muscles; its cytoplasm contains virus-like fine granules of high electron-density. The anterior extremity of the midgut consists of two cellular types: (1) thin epithelia with well-developed and regularly arranged microvilli, and (2) large cuboidal cells with short and sparse microvilli. Cells of the posterior extremity of the midgut have regularly arranged microvilli and shallow basal infoldings devoid of mitochondria. Cells of the proximal Malpighian tubule possess concentric granules of different electron-density. The internal proximal ileum lined with a cuticle facing the lumen and contains secretory vesicles in its cytoplasm. Dense and long microvilli at the apical border of the conical segment cells are coated with abundant electron-dense fine granules. Cells of the anterior tubular midgut contain spherical secretory granules, oval secretory vesicles of different size, and autophagic vacuoles. Ferritin-like granules exist in the mid-midgut cells. The posterior tubular midgut consists of two cellular types: 1) cells with shallow and bulb-shaped basal infoldings containing numerous mitochondria, homocentric secretory granules, and fine electron-dense granules, and 2) cells with well-developed basal infoldings and regularly-arranged apical microvilli containing vesicles filled with fine granular materials. Cells of the distal tubular midgut are similar to those of the conical segment, but lack electron-dense fine granules coating the microvilli apex. Filamentous materials coat the microvilli of the conical segment, anterior and posterior extremities of the midgut, which are possibly the perimicrovillar membrane closely related to the nutrient absorption. The lumen of the hindgut is lined with a cuticle, beneath which are cells with poorly-developed infoldings possessing numerous mitochondria. Single-membraned or double-membraned microorganisms exist in the anterior and posterior extremities of the midgut, proximal Malpighian tubule and ileum; these are probably symbiotic.  相似文献   

19.
The epithelium of anterior midgut of adult Cenocorixa bifida was examined with light and electron microscopy. The folded epithelium is composed of tall columnar cells extending to the lumen, differentiating dark and light cells with interdigitating apices and regenerative basal cells in the nidi surrounded by villiform ridges that penetrate deeply into the epithelium. The columnar cells display microvilli at their luminal surface. Microvilli lined intercellular spaces and basal plasma membrane infoldings are associated with mitochondria. These ultrastructural features suggest their role in absorption of electrolytes and nutrients from the midgut lumen. The columnar cells contain large oval nuclei with prominent nucleoli. Their cytoplasm is rich in rough endoplasmic reticulum, Golgi complexes and electron-dense secretory granules indicating that they are also engaged in synthesis of digestive enzymes. The presence of secretory granules in close proximity of the apical plasma membrane suggests the release of secretion is by exocytosis. The presence of degenerating cells containing secretory granules at the luminal surface and the occurance of empty vesicles and cell fragments in the lumen are consistent with the holocrine secretion of digestive enzymes. Apical extrusions of columnar cells filled with fine granular material are most likely formed in response to the lack of food in the midgut. The presence of laminated concretions in the cytoplasm is indicative of storageexcretion of surplus minerals. The peritrophic membrane is absent from the midgut of C. bifida.  相似文献   

20.
Fine structure of the midgut and degeneration of the midgut epithelium of the scorpionfly Sinopanorpa tincta (Navás) adults were investigated using light microscopy and scanning and transmission electron microscopy. The results show that the tubular midgut lacks gastric caeca and is composed of an outer longitudinal and an inner circular muscle layer, a basal lamina, an epithelium and a lumen from the outside to inside. A peritrophic membrane was not found in the lumen. A mass of nodules was observed on the surface of the basal lamina. Three types of cells were recognized in the epithelium: digestive, secretory, and regenerative cells. The digestive cells contain irregular-shaped infoldings in the basal membrane and two types of microvilli in the apical membrane. The secretory cells are characterized by irregular shape and large quantities of secretory granules in the basal cytoplasm. The regenerative cells are triangular in shape and distributed only in the nodules. The epithelial cells are degenerated through programmed cell-death mechanisms (apoptosis and necrosis). The type, function, and degeneration of the epithelial cells of the midgut are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号