首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardamonin (CD), a naturally occurring chalcone isolated from large black cardamom, was previously reported to suppress the proliferation of breast cancer cells. However, its precise molecular anti‐tumor mechanisms have not been well elucidated. In this study, we found that CD markedly inhibited the proliferation of MDA‐MB 231 and MCF‐7 breast cancer cells through the induction of G2/M arrest and apoptosis. Reactive oxygen species (ROS) plays a pivotal role in the inhibition of CD‐induced cell proliferation. Treatment with N‐acetyl‐cysteine (NAC), an ROS scavenger, blocked CD‐induced G2/M arrest and apoptosis in this study. Quenching of ROS by overexpression of catalase also blocked CD‐induced cell cycle arrest and apoptosis. We showed that CD enhanced the expression and nuclear translocation of Forkhead box O3 (FOXO3a) via upstream c‐Jun N‐terminal kinase, inducing the expression of FOXO3a and its target genes, including p21, p27, and Bim. This process led to the reduction of cyclin D1 and enhancement of activated caspase‐3 expression. The addition of NAC markedly reversed these effects, knockdown of FOXO3a using small interfering RNA also decreased CD‐induced G2/M arrest and apoptosis. In vivo, CD efficiently suppressed the growth of MDA‐MB 231 breast cancer xenograft tumors. Taken together, our data provide a molecular mechanistic rationale for CD‐induced cell cycle arrest and apoptosis in breast cancer cells.  相似文献   

2.
3.
MicroRNAs (miRNAs) are key regulators in the tumour growth and metastasis of human hepatocellular carcinoma (HCC). Increasing evidence suggests that miR‐301b‐3p functions as a driver in various types of human cancer. However, the expression pattern of miR‐301b‐3p and its functional role as well as underlying molecular mechanism in HCC remain poorly known. Our study found that miR‐301b‐3p expression was significantly up‐regulated in HCC tissues compared to adjacent non‐tumour tissues. Clinical association analysis revealed that the high level of miR‐301b‐3p closely correlated with large tumour size and advanced tumour‐node‐metastasis stages. Importantly, the high miR‐301b‐3p level predicted a prominent poorer overall survival of HCC patients. Knockdown of miR‐301b‐3p suppressed cell proliferation, led to cell cycle arrest at G2/M phase and induced apoptosis of Huh7 and Hep3B cells. Furthermore, miR‐301b‐3p knockdown suppressed tumour growth of HCC in mice. Mechanistically, miR‐301b‐3p directly bond to 3′UTR of vestigial like family member 4 (VGLL4) and negatively regulated its expression. The expression of VGLL4 mRNA was down‐regulated and inversely correlated with miR‐301b‐3p level in HCC tissues. Notably, VGLL4 knockdown markedly repressed cell proliferation, resulted in G2/M phase arrest and promoted apoptosis of HCC cells. Accordingly, VGLL4 silencing rescued miR‐301b‐3p knockdown attenuated HCC cell proliferation, cell cycle progression and apoptosis resistance. Collectively, our results suggest that miR‐301b‐3p is highly expressed in HCC. miR‐301b‐3p facilitates cell proliferation, promotes cell cycle progression and inhibits apoptosis of HCC cells by repressing VGLL4.  相似文献   

4.
5.
Expression of a truncated form of the death receptor adaptor FADD (C-FADD) as a transgene in mice blocks T cell proliferation. Here we provide evidence that the C-terminal phosphorylation site Ser194 in C-FADD affects the cell cycle in nonlymphoid cells as well. High expression of wild type C-FADD but not C-FADD with a S194A point mutation arrested the nontumor cell line MCF10A in G2/M but not the tumor cell line MCF7. BJAB as well as MCF10A cells expressing moderate levels of C-FADD with a S194E mutation mimicking phosphorylated C-FADD were more susceptible to a Taxol-induced G2/M arrest than cells expressing C-FADD S194A suggesting that C-FADD S194E lowers the threshold for G2/M arrest. Our data suggest that C-FADD may affect apoptosis sensitivity of cells by interfering with cell cycle progression and not only by binding to death receptors.  相似文献   

6.
We have previously demonstrated that in renal cortical collecting duct cells (RCCD1) the expression of the water channel Aquaporin 2 (AQP2) raises the rate of cell proliferation. In this study, we investigated the mechanisms involved in this process, focusing on the putative link between AQP2 expression, cell volume changes, and regulatory volume decrease activity (RVD). Two renal cell lines were used: WT‐RCCD1 (not expressing aquaporins) and AQP2‐RCCD1 (transfected with AQP2). Our results showed that when most RCCD1 cells are in the G1‐phase (unsynchronized), the blockage of barium‐sensitive K+ channels implicated in rapid RVD inhibits cell proliferation only in AQP2‐RCCD1 cells. Though cells in the S‐phase (synchronized) had a remarkable increase in size, this enhancement was higher and was accompanied by a significant down‐regulation in the rapid RVD response only in AQP2‐RCCD1 cells. This decrease in the RVD activity did not correlate with changes in AQP2 function or expression, demonstrating that AQP2—besides increasing water permeability—would play some other role. These observations together with evidence implying a cell‐sizing mechanism that shortens the cell cycle of large cells, let us to propose that during nutrient uptake, in early G1, volume tends to increase but it may be efficiently regulated by an AQP2‐dependent mechanism, inducing the rapid activation of RVD channels. This mechanism would be down‐regulated when volume needs to be increased in order to proceed into the S‐phase. Therefore, during cell cycle, a coordinated modulation of the RVD activity may contribute to accelerate proliferation of cells expressing AQP2. J. Cell. Biochem. 113: 3721–3729, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Peroxisome proliferator‐activated receptors (PPARs) mediate the effects of various ligands, known as peroxisome proliferators, a heterogeneous class of compounds including industrial chemicals, pharmaceuticals, and biomolecules such as fatty acids and eicosanoids. Among peroxisome proliferators, fibrate derivatives are considered specific ligands for PPARα, whereas eicosanoids, such as PGJ2, for PPARγ. The study aimed to clarify the relation between PPARs and apoptosis or proliferation on the same type of cells, using clofibrate as specific ligand of PPARα and PGJ2 as specific ligand of PPARγ. The cells used were human hepatocarcinoma HepG2 cells. The results showed that PPARα protein content increased in HepG2 cells treated with clofibrate, causing apoptosis in a time‐ and concentration‐dependent way, as evidenced by the citofluorimetric assay and determination of BAD, myc and protein phosphatase 2A protein content. It also emerged that PPARγ increased in the same cells when treated with a specific ligand of this PPAR; in this case the increase of PPARγ did not cause an increase of apoptosis, but a time‐ and concentration‐dependent inhibition of cell proliferation, evidenced by decreased cell numbers and increased number of cells in the G0/G1 phase of the cycle. It may be concluded that PPARα is chiefly related to apoptosis and PPARγ to cell proliferation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The CD40 signaling pathway plays a key role in tumor cell proliferation, differentiation, and apoptosis. Gastric cancer usually possesses a higher level of CD40 expression than normal tissue. We evaluated inhibition of soluble CD40 ligand (sCD40L) in apoptosis induction of gastric cancer cells. Gastric cancer cells (AGS and BGC-823) were incubated with sCD40L. Cell viability and cell cycle were determined by methyl-tetrazolium (MTT) assay and flow cytometry, respectively. The results showed that sCD40L hindered cell growth, arrested cells at G0/G1 phase and induced apoptosis. In conclusion, sCD40L suppress growth of gastric cancer cells through apoptosis induction and cell cycle quiescence. This work will provided a new approach to gene therapy of gastric cancer.  相似文献   

9.
为了研究转录因子Foxo3a高表达对小鼠T淋巴瘤EL-4细胞周期和凋亡的影响,采用电穿孔法将真核表达载体pEGFP-N1/Foxo3a转染小鼠T淋巴瘤细胞系EL-4细胞,并通过聚合酶链式反应和免疫印迹法分别检测Foxo3a mRNA及蛋白表达。转录因子Foxo3a高表达后,采用细胞计数法绘制其细胞生长曲线;采用荧光显微镜法及流式细胞仪定性和定量观察典型EL-4细胞凋亡形态特征、细胞凋亡百分率及细胞周期变化情况。结果表明,转录因子Foxo3a真核表达质粒pEGFP-N1/Foxo3a经酶切鉴定及测序检测序列正确。转染pEGFP-N1/Foxo3a的小鼠EL-4细胞表达Foxo3a mRNA和蛋白水平显著升高。Foxo3a高表达明显抑制EL-4细胞的增殖能力,并使EL-4细胞发生明显G2期阻滞(P<0.001)。Foxo3a基因高表达后,荧光显微镜可以观察到典型凋亡的细胞形态。同时,EL-4细胞凋亡百分率显著升高(P<0.01)。结果提示,Foxo3a高表达可以有效抑制小鼠T淋巴瘤细胞体外细胞增殖,使细胞周期G2时相阻滞,并具有诱导细胞凋亡的作用。  相似文献   

10.
We examined concentration-dependent changes in cell cycle distribution and cell cycle-related proteins induced by butyric acid. Butyric acid enhanced or suppressed the proliferation of Jurkat human T lymphocytes depending on concentration. A low concentration of butyric acid induced a massive increase in the number of cells in S and G2/M phases, whereas a high concentration significantly increased the accumulation of cells in G2/M phase, suppressed the accumulation of cells in G0/G1 and S phases, and induced apoptosis that cell cycle-related protein expression in Jurkat cells treated with high levels of butyric acid caused a marked decrease in cyclin A, cyclin E, cyclin-dependent kinase 2 (CDK2), CDK4 and CDK6 protein levels in G0/G1 and S phases, with apoptosis induction, and a decrease in cyclin B, Cdc25c and p27KIP1 protein levels, as well as an increase in p21CIP1/WAF1 protein level, in the G2/M phase. Taken together, our results indicate that butyric acid has bimodal effects on cell proliferation and survival. The inhibition of cell growth followed by the increase in apoptosis induced by high levels of butyric acid were related to an increase in cell death in G0/G1 and S phases, as well as G2/M arrest of cells. Finally, these results were further substantiated by the expression profile of butyric acid-treated Jurkat cells obtained by means of cDNA array.  相似文献   

11.
Survivin is a member of the inhibitor of apoptosis protein (IAP) family that is over-expressed during G2/M phase in most cancer cells. In contrast, we previously reported that Survivin is expressed throughout the cell cycle in normal CD34+ hematopoietic stem and progenitor cells stimulated by the combination of Thrombopoietin (Tpo), Stem Cell Factor (SCF) and Flt3 ligand (FL). In order to address whether Survivin expression is specifically up-regulated by hematopoietic growth factors before cell cycle entry, we isolated quiescent CD34+ cells and investigated Survivin expression in response to growth factor stimulation. Survivin is up-regulated in CD34+ cells with 2N DNA content following growth factor addition, suggesting it becomes elevated during G0/G1. Survivin is barely detectable in freshly isolated umbilical cord blood (UCB) Ki-67negative and Cyclin Dnegative CD34+ cells, however incubation with Tpo, SCF and FL for 20 hrs results in up-regulation without entry of cells into cell cycle. Culture of G0 CD34+ cells isolated based on Hoechst 33342/PyroninY staining with Tpo, SCF and FL for 48 hrs, results in significantly elevated Survivin mRNA and protein levels. Moreover, labeling of fresh G0 CD34+ cells with 5-(and 6-) carboxyfluorescein diacetate succinimidyl ester (CFSE) before culture with growth factors for up to 72 hrs, revealed that Survivin expression was elevated in CFSEbright G0 CD34+ cells, indicating that up-regulation occurred before entry into G1. These results suggest that up-regulation of Survivin expression in CD34+ cells is an early event in cell cycle entry that is regulated by hematopoietic growth factors and does not simply reflect cell cycle progression and cell division.

Key Words:

Survivin, Cord blood, CD34+ cells, Cell cycle  相似文献   

12.
BACKGROUND: The prostate androgen-regulated (PAR) gene is ubiquitously overexpressed in prostate cancer (PCa) cells and is involved in proliferation of PCa. However, the mechanism by which the modulation of PAR gene expression elicits its biological effects on PCa cells is not well documented. Here, we investigate the mechanism of PAR depletion inhibiting PCa cell growth. METHODS: PAR expression was depleted by small interfering RNA (siRNA) and its subsequent effects on proliferation of PC3 cells were determined by the trypan blue exclusion assay. Flow cytometric analysis provided the evidence for the progression of cell cycle and the induction of apoptosis which was further confirmed by the observation of cleavage of poly(ADP-ribose) polymerase. Western blot analysis was performed to investigate the involvement of critical molecular events known to regulate the cell cycle and the apoptotic machinery. RESULTS: siRNA transfection results in a dose-dependent inhibition of cell growth in PC3 cells by causing G2/M phase cell cycle arrest and apoptosis. The G2/M arrest by PAR depletion was associated with decreased levels of cyclin B1, pCdc2 (Tyr15), Cdc2 and Cdc25C. PAR depletion also was found to result in inhibition of procaspases 9, 8, 6 and 3 with significant increase in the ratio of Bax : Bcl-2. CONCLUSIONS: Our data indicate that PAR depletion induces G2/M arrest via the Cdc25C-Cdc2/cyclin B1 pathway. Furthermore, the results of the present study point toward involvement of pathways mediated by both caspase 8 and caspase 9 in apoptosis induction by PAR depletion.  相似文献   

13.
Survivin is a member of the inhibitor of apoptosis protein (IAP) family that is overexpressed during G(2)/M phase in most cancer cells. In contrast, we previously reported that Survivin is expressed throughout the cell cycle in normal CD34(+) hematopoietic stem and progenitor cells stimulated by the combination of Thrombopoietin (Tpo), Stem Cell Factor (SCF) and Flt3 ligand (FL). In order to address whether Survivin expression is specifically up-regulated by hematopoietic growth factors before cell cycle entry, we isolated quiescent CD34(+) cells and investigated Survivin expression in response to growth factor stimulation. Survivin is up-regulated in CD34(+) cells with 2N DNA content following growth factor addition, suggesting it becomes elevated during G(0)/G(1). Survivin is barely detectable in freshly isolated umbilical cord blood (UCB) Ki-67(negative) and Cyclin D(negative) CD34(+) cells, however incubation with Tpo, SCF and FL for 20 hrs results in up-regulation without entry of cells into cell cycle. Culture of G(0) CD34(+) cells isolated based on Hoechst 33342/PyroninY staining with Tpo, SCF and FL for 48 hrs, results in significantly elevated Survivin mRNA and protein levels. Moreover, labeling of fresh G(0) CD34(+) cells with 5-(and 6-) carboxyfluorescein diacetate succinimidyl ester (CFSE) before culture with growth factors for up to 72 hrs, revealed that Survivin expression was elevated in CFSE(bright) G(0) CD34(+) cells, indicating that up-regulation occurred before entry into G1. These results suggest that up-regulation of Survivin expression in CD34(+) cells is an early event in cell cycle entry that is regulated by hematopoietic growth factors and does not simply reflect cell cycle progression and cell division.  相似文献   

14.
The aim of this study was to explore the regulatory mechanism of circRNA_100876/ microRNA-136 (miR-136) axis in the development and progression of osteosarcoma cancer. Quantitative real-time polymerase chain reaction (RT-qPCR) was used to evaluate the expression levels of circRNA_100876 and miR-136 in osteosarcoma cancer samples and the adjacent nontumor tissues. Then, cell proliferation, cell cycle, apoptosis, and migration of circRNA_100876-knocked down cells were analyzed by in vitro and in vivo experiments, using cell counting kit-8 (CCK-8), flow cytometry, and transwell and tumorigenesis assays. The expression of circRNA_100876 was found to be significantly upregulated in osteosarcoma, and was closely correlated with the tumor size and tumor differentiation degree. In addition, the knockdown of circRNA_100876 could significantly inhibit the tumor growth, both in vitro and in vivo. Flow cytometry and Western blot analysis results showed that the downregulation of circRNA_100876 inhibited osteosarcoma cells proliferation via promoting apoptosis and arresting more cells in the G2/M stage, as suggested by the expression of apoptosis and cell cycle pathway-related proteins, which changed consistently. Furthermore, the level of miR-136 was negatively correlated with the expression of circRNA_100876, and miR-136 inhibitors were able to reverse the suppression of cell proliferation induced by silencing circRNA_100876. Our study demonstrates that the dysregulation of circRNA_100876 could induce apoptosis and arrest the cell cycle at G2/M stage, followed by suppression of cell proliferation in osteosarcoma, while silencing miR-136 could restore the cell growth. Therefore, circRNA_100876 might serve as a promising biomarker and treatment target for osteosarcoma.  相似文献   

15.
Ryu DS  Baek GO  Kim EY  Kim KH  Lee DS 《BMB reports》2010,43(11):750-755
Crude Orostachys japonicus polysaccharide extract (OJP) was prepared by hot steam extraction. Polysaccharides (OJPI) were separated from OJP by gel filtration chromatography and phenol-sulfuric acid assay. The average molecular weight of the OJPI was 30-50 kDa. The anti-proliferative effect of OJPI on HT-29 human colon cancer cells was investigated via morphology study, cell viability assay, apoptosis assay, cell cycle analysis, and cDNA microarray. OJPI inhibited proliferation and growth of HT29 cells and also stimulated apoptosis in a dose- and time-dependent manner. In cell cycle analysis, treatment with OJPI resulted in a marked increase of cells in the G0 (sub G1) and G2/M phases. To screen for genes involved in the induction of cell cycle arrest and apoptosis, the gene expression profiles of HT-29 cells treated with OJPI were examined by cDNA microarray, revealing that a number of genes were up- or down-regulated by OJPI. Whereas several genes involved in anti-apoptosis, cell proliferation and growth, and cell cycle regulation were down-regulated, expression levels of several genes involved in apoptosis, tumor suppression, and other signal transduction events were up-regulated. These results suggest that OJPI inhibits the growth of HT-29 human colon cancer cells by various apoptosis-aiding activities as well as apoptosis itself. Therefore, OJPI deserve further development as an effective agent exhibiting anticancer activity.  相似文献   

16.
目的: 研究α-烯醇化酶(ENO1)基因干扰表达对籽鹅卵泡颗粒细胞增殖、凋亡和细胞周期的影响。方法: 原代培养籽鹅F1级卵泡颗粒细胞(复合培养),将ENO1基因干扰表达重组质粒转染至籽鹅卵泡颗粒细胞。实验分为四组:ENO1干扰表达组(RNAi)、无关序列干扰组(NC)、培养液组(Control)、转染试剂组(Lip)。流式细胞术检测干扰组和对照各组的凋亡率、细胞周期时相性。结果: ENO1基因干扰表达使籽鹅卵泡颗粒细胞增殖速度变慢,凋亡率增加,G2/M期颗粒细胞比例增高。结论: ENO1基因干扰表达可使籽鹅卵泡颗粒细胞周期发生G2/M期阻滞,诱导细胞发生凋亡,抑制细胞增殖。  相似文献   

17.
运用中药龙葵提取物澳洲茄边碱处理人肺腺癌A549细胞,研究其对A549细胞的抑制及凋亡作用,探讨澳洲茄边碱对肺腺癌的作用机制。通过细胞增殖抑制实验检测不同浓度澳洲茄边碱对A549细胞增殖的影响,采用蛋白印迹法(Western blot)检测凋亡蛋白Caspase3的表达水平,采用流式细胞术测定处理后A549细胞的凋亡水平及细胞周期变化。结果显示,不同浓度澳洲茄边碱均能抑制A549的增殖,呈浓度效应;用不同浓度澳洲茄边碱处理A549细胞24h后,Western blot结果显示,随药物浓度增大,凋亡蛋白Caspase3水解程度增高,对A549凋亡作用明显增强;流式细胞术检测细胞凋亡的结果显示,20μmol·L-1澳洲茄边碱处理A549细胞后,细胞发生明显凋亡,其中早期凋亡细胞比例为25.35%,晚期凋亡细胞比例为11.47%;流式细胞术检测细胞周期的结果显示,20μmol·L-1澳洲茄边碱处理A549细胞后,细胞周期阻滞于G2/M期。本研究结果表明,澳洲茄边碱通过激活细胞凋亡通路中的Caspase3蛋白触发细胞凋亡,同时将A549细胞阻滞在细胞周期的G2/M期,抑制人肺腺癌细胞A549的生长。  相似文献   

18.
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by proliferation and insufficient apoptosis of synovial cells. NK4 is a hepatocyte growth factor antagonist and is implicated in cell proliferation, viability, and apoptosis of many tumour cells. This study aimed to investigate the role of NK4 in the regulation of human RA synovial cell proliferation and apoptosis. Fibroblast‐like synoviocytes (FLSs) isolated from RA patients and MH7A synovial cells were subjected to MTT, flow cytometry, and Western blot analysis. We found that NK4 suppressed cell proliferation through cell cycle arrest at the G0/G1 phase and induced apoptosis in RA synovial cells. Furthermore, NK4 altered the expression of cell cycle and apoptosis‐related proteins such as cyclin D1, cyclin B1, PCNA, p21, p53, Bcl‐2, Bax, cleaved caspase‐9, and cleaved caspase‐3. Additionally, NK4 reduced the phosphorylation level of NF‐κB p65 and upregulated the expression of sirt1, but did not change the levels of p38 and p‐p38 in RA‐FLS and MH7A cells. In conclusion, NK4 inhibits the proliferation and induces apoptosis of human RA synovial cells. NK4 is a promising therapeutic target for RA. We demonstrated that NK4 inhibited cell proliferation by inducing apoptosis and arresting cell cycle in RA‐FLS and MH7A cells. The apoptotic effects of NK4 may be mediated in part by decreasing Bcl‐2 protein level, increasing Bax and caspase 3 protein levels, and inhibiting NF‐κB signalling in RA‐FLS and MH7A cells. These findings reveal potential mechanism underlying the role of NK4 in RA synovial cells and suggest that NK4 is a promising agent for RA treatment.  相似文献   

19.
BackgroundPrevious studies showed that suppression of pyruvate carboxylase (PC) expression in highly invasive breast cancer cell line, MDA-MB-231 inhibits cell growth as a consequence of the impaired cellular biosynthesis. However, the precise cellular mechanism underlying this growth restriction is unknown.MethodsWe generated the PC knockdown (PCKD) MDA-MB-231 cells and assessed their phenotypic changes by fluorescence microscopy, proliferation, apoptotic, cell cycle assays and proteomics.ResultsPC knockdown MDA-MB-231 cells had a low percentage of cell viability in association with accumulation of abnormal cells with large or multi-nuclei. Flow cytometric analysis of annexin V-7-AAD positive cells showed that depletion of PC expression triggers apoptosis with the highest rate at day 4. The increased rate of apoptosis is consistent with increased cleavage of procaspase 3 and poly (ADP-Ribose) polymerase. Cell cycle analysis showed that the apoptotic cell death was associated with G2/M arrest, in parallel with marked reduction of cyclin B levels. Proteomic analysis of PCKD cells identified 9 proteins whose expression changes were correlated with the degree of apoptosis and G2/M cell cycle arrest in the PCKD cells. STITCH analysis indicated 3 of 9 candidate proteins, CCT3, CABIN1 and HECTD3, that form interactions with apoptotic and cell cycle signaling networks linking to PC via MgATP.ConclusionsSuppression of PC in MDA-MB-231 cells induces G2/M arrest, leading to apoptosis. Proteomic analysis supports the potential involvement of PC expression in the aberrant cell cycle and apoptosis, and identifies candidate proteins responsible for the PC-mediated cell cycle arrest and apoptosis in breast cancer cells.General significanceOur results highlight the possibility of the use of PC as an anti-cancer drug target.  相似文献   

20.
目的:探究组蛋白甲基转移酶G9a抑制剂(BIX-01294)对肝癌细胞周期、凋亡及移植瘤的影响。方法:将SMMC-7721、BEL-7402、HL-7702原始细胞株传代培养后,分为空白对照组和不同浓度(1μM、5μM、10μM、20μM)BIX-01294处理组。应用Western-blot法检测G9a及肝癌细胞内凋亡蛋白CC3、C-PARP、Bax、Bcl-2表达水平;应用四甲基偶氮唑盐(MTT)比色法检测不同浓度BIX-01294处理SMMC-7721、BEL-7402细胞24、48、72、96 h后的细胞增殖情况;应用流式细胞术检测不同浓度的BIX-01294处理肝癌细胞96h后细胞周期分布情况;移植瘤试验21 d后测量裸鼠体内肿瘤体积及重量,并检测瘤体内H3K9me2的蛋白水平。结果:G9a在肝癌细胞SMMC-7721、BEL-7402中表达水平高于HL-7702细胞(P<0.05)。不同浓度的BIX-01294对SMMC-7721细胞和BEL-7402细胞增殖具有抑制作用,且具有时间依赖性和剂量依赖性(均P<0.05)。不同浓度BIX-01294处理细胞96h后,SMMC-7721细胞和BEL-7402细胞G0/G1期细胞比例增加,S和G2/M期的细胞比例降低(P<0.05)。5μM BIX-01294处理细胞96h后能明显增加CC3、Bax、C-PARP表达水平,并降低Bcl-2的表达水平(P<0.05),与空白对照组相比,BIX-01294处理组裸鼠肿瘤体积减小,重量较低,且肿瘤组织内H3K9me2的表达水平下降(P<0.05)。结论:BIX-01294导致SMMC-7721、BEL-7402细胞发生周期阻滞和凋亡,且对肿瘤的生长具有明显的抑制作用,其可能是通过抑制G9a的表达从而降低H3K9me2的表达来抑制肿瘤的生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号