共查询到20条相似文献,搜索用时 15 毫秒
1.
Shin-Ei Cheng I-Ta Lee Chih-Chung Lin Yu Ru Kou Chuen-Mao Yang 《Free radical biology & medicine》2010,48(10):1410-1422
Heme oxygenase-1 (HO-1) is known as an oxidative stress protein that is up-regulated by various stimuli. HO-1 has been shown to protect cells against oxidative damage. Cigarette smoke is a potential inflammatory mediator that causes chronic obstructive pulmonary disease and asthma. In this study, we report that cigarette smoke particle-phase extract (CSPE) is an inducer of HO-1 expression mediated through various signaling pathways in human tracheal smooth muscle cells (HTSMCs). CSPE-induced HO-1 protein, mRNA expression, and promoter activity were attenuated by pretreatment with a ROS scavenger (N-acetyl-l-cysteine) and inhibitors of c-Src (PP1), NADPH oxidase [diphenylene iodonium chloride (DPI) and apocynin (APO)], MEK1/2 (U0126), p38 MAPK (SB202190), and JNK1/2 (SP600125) or transfection with siRNAs for Src, p47phox, NOX2, p42, p38, JNK2, or NF-E2-related factor 2 (Nrf2). CSPE-stimulated translocation of p47phox and Nrf2, ROS production, and NADPH oxidase activity was attenuated by transfection with siRNAs for Src, p47phox, and NOX2 or pretreatment with PP1, DPI, or APO. Furthermore, CSPE-induced NOX2, c-Src, and p47phox complex formation was revealed by immunoprecipitation using an anti-NOX2, anti-p47phox, or anti-c-Src Ab followed by Western blot against anti-NOX2, anti-p47phox, or anti-c-Src Abs. These results demonstrate that CSPE-induced ROS generation is mediated through a c-Src/NADPH oxidase/MAPK pathway and in turn initiates the activation of Nrf2 and ultimately induces HO-1 expression in HTSMCs. 相似文献
2.
Sun Hui-Hui Feng Xin-Min Wang Jing-Cheng Cai Jun 《Molecular and cellular biochemistry》2021,476(1):435-441
Molecular and Cellular Biochemistry - Whether allicin can suppress the angiogenesis via inhibiting the activity of vascular endothelial cells (VECs) in preventing epidural hypertrophic scars... 相似文献
3.
Up-regulation of cytosolic phospholipase A(2) (cPLA(2)) by cigarette smoke extract (CSE) may play a critical role in airway inflammatory diseases. However, the mechanisms underlying CSE-induced cPLA(2) expression in human tracheal smooth muscle cells (HTSMCs) were not completely understood. Here, we demonstrated that CSE-induced cPLA(2) protein and mRNA expression was inhibited by pretreatment with the inhibitors of AP-1 (tanshinone IIA) and p300 (garcinol) or transfection with siRNAs of c-Jun, c-Fos, and p300. Moreover, CSE also induced c-Jun and c-Fos expression, which were inhibited by pretreatment with the inhibitors of NADPH oxidase (diphenyleneiodonium chloride and apocynin) and the ROS scavenger (N-acetyl-L-cysteine) or transfection with siRNAs of p47(phox) and NADPH oxidase (NOX)2. CSE-induced c-Fos expression was inhibited by pretreatment with the inhibitors of MEK1 (U0126) and p38 MAPK (SB202190) or transfection with siRNAs of p42 and p38. CSE-induced c-Jun expression and phosphorylation were inhibited by pretreatment with the inhibitor of JNK1/2 (SP600125) or transfection with JNK2 siRNA. CSE-stimulated p300 phosphorylation was inhibited by pretreatment with the inhibitors of NADPH oxidase and JNK1/2. Furthermore, CSE-induced p300 and c-Jun complex formation was inhibited by pretreatment with diphenyleneiodonium chloride, apocynin, N-acetyl-L-cysteine or SP600125. These results demonstrated that CSE-induced cPLA(2) expression was mediated through NOX2-dependent p42/p44 MAPK and p38 MAPK/c-Fos and JNK1/2/c-Jun/p300 pathways in HTSMCs. 相似文献
4.
Rouhanizadeh M Hwang J Clempus RE Marcu L Lassègue B Sevanian A Hsiai TK 《Free radical biology & medicine》2005,39(11):1512-1522
Modified low-density lipoprotein (LDL) induces reactive oxygen species (ROS) production by vascular cells. It is unknown if specific oxidized components in these LDL particles such as oxidized-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (ox-PAPC) can stimulate ROS production. Bovine aortic endothelial cells (BAEC) were incubated with ox-PAPC (50 microg/ml). At 4 h, ox-PAPC significantly enhanced the rate of O2- production. Pretreatment of BAEC in glucose-free Dulbecco's modified Eagle's medium plus 10 mM 2-deoxyglucose (2-DOG), the latter being an antimetabolite that blocks NADPH production by the pentose shunt, significantly reduced the rate of O2- production. The intensity of NAD(P)H autofluorescence decreased by 28 +/- 12% in BAEC incubated with ox-PAPC compared to untreated cells, with a further decrease in the presence of 2-DOG. Ox-PAPC also increased Nox4 mRNA expression by 2.4-fold +/- 0.1 while pretreatment of BAEC with the small interfering RNA (siNox4) attenuated Nox4 RNA expression. Ox-PAPC further reduced the level of glutathione while pretreatment with apocynin (100 microM) restored the GSH level (control = 22.54 +/- 0.23, GSH = 18.06 +/- 0.98, apocynin = 22.55 +/- 0.60, ox-PAPC + apocynin = 21.17 +/- 0.36 nmol/10(6) cells). Treatment with ox-PAPC also increased MMP-2 mRNA expression accompanied by a 1.5-fold increase in MMP-2 activity. Ox-PAPC induced vascular endothelial OO2-(.) production that appears to be mediated largely by NADPH oxidase activity. 相似文献
5.
T Senga T Iwamoto T Kitamura Y Miyake M Hamaguchi 《The Journal of biological chemistry》2001,276(35):32678-32681
The Ras-related GTPase (Ral) is converted to the GTP-bound form by Ral guanine nucleotide dissociation stimulator (RalGDS), a putative effector protein of Ras. Recently, it was proven that Ral regulates c-Src activity and subsequent phosphorylation of its substrate, STAT3. Here, we show that STAT3 inversely regulates activation of Ral through induction of expression of RalGDS. To identify new leukemia inhibitory factor-induced genes, we have performed representational difference analysis using M1 mouse myeloid leukemia cells and cloned RalGDS. The expression of RalGDS and subsequent activation of RalA were clearly suppressed by a dominant negative form of STAT3 and a JAK inhibitor, JAB/SOCS1/SSI-1, indicating that RalGDS/RalA signaling requires the activation of the JAK/STAT3 pathway. An experiment using a Ras inhibitor demonstrated that full activation of RalA also requires activation of Ras. These results suggest a novel cross-talk between JAK/STAT3 and the Ras/RalGDS/Ral signaling pathways through gp130. 相似文献
6.
Jessica Petiti Valentina Rosso Marco Lo Iacono Cristina Panuzzo Chiara Calabrese Elisabetta Signorino Lucrezia Pironi Antonio Cartell Enrico Bracco Barbara Pergolizzi Tiziana Beltramo Carmen Fava Daniela Cilloni 《Journal of cellular and molecular medicine》2019,23(6):4349-4357
Myeloproliferative neoplasms are chronic myeloid cancers divided in Philadelphia positive and negative. The JAK2 V617F is the most common mutation in Philadelphia negative patients and results in a constitutive activation of the JAK/STAT pathway, conferring a proliferative advantage and apoptosis inhibition. Recent studies identified a functional crosstalk between the JAK/STAT and mTOR pathways. The identification of an effective therapy is often difficult, so the availability of new therapeutic approaches might be attractive. Previous studies showed that curcumin, the active principle of the Curcuma longa, can suppress JAK2/STAT pathways in different type of cancer and injuries. In this study, we investigated the anti‐proliferative and pro‐apoptotic effects of curcumin in JAK2 V617F‐mutated cells. HEL cell line and cells from patients JAK2 V617F mutated have been incubated with increasing concentrations of curcumin for different time. Apoptosis and proliferation were evaluated. Subsequently, JAK2/STAT and AKT/mTOR pathways were investigated at both RNA and protein levels. We found that curcumin induces apoptosis and inhibition of proliferation in HEL cells. Furthermore, we showed that curcumin inhibits JAK2/STAT and mTORC1 pathways in JAK2 V617F‐mutated cells. This inhibition suggests that curcumin could represent an alternative strategy to be explored for the treatment of patients with myeloproliferative neoplasms. 相似文献
7.
TWEAK/Fn14 mediates atrial‐derived HL‐1 myocytes hypertrophy via JAK2/STAT3 signalling pathway 下载免费PDF全文
Li Hao Manyi Ren Bing Rong Fei Xie Ming‐jie Lin Ya‐chao Zhao Xin Yue Wen‐qiang Han Jing‐quan Zhong 《Journal of cellular and molecular medicine》2018,22(9):4344-4353
Atrial myocyte hypertrophy is one of the most important substrates in the development of atrial fibrillation (AF). The TWEAK/Fn14 axis is a positive regulator of cardiac hypertrophy in cardiomyopathy. This study therefore investigated the effects of Fn14 on atrial hypertrophy and underlying cellular mechanisms using HL‐1 atrial myocytes. In patients with AF, Fn14 protein levels were higher in atrial myocytes from atrial appendages, and expression of TWEAK was increased in peripheral blood mononuclear cells, while TWEAK serum levels were decreased. In vitro, Fn14 expression was up‐regulated in response to TWEAK treatment in HL‐1 atrial myocytes. TWEAK increased the expression of ANP and Troponin T, and Fn14 knockdown counteracted the effect. Inhibition of JAK2, STAT3 by specific siRNA attenuated TWEAK‐induced HL‐1 atrial myocytes hypertrophy. In conclusion, TWEAK/Fn14 axis mediates HL‐1 atrial myocytes hypertrophy partly through activation of the JAK2/STAT3 pathway. 相似文献
8.
Interleukin-6-induced JAK2/STAT3 signaling pathway in endothelial cells is suppressed by hemodynamic flow 总被引:2,自引:0,他引:2
Ni CW Hsieh HJ Chao YJ Wang DL 《American journal of physiology. Cell physiology》2004,287(3):C771-C780
Endothelial cells (ECs) are constantly exposed to shear stress, the action of which triggers signaling pathways and cellular responses. During inflammation, cytokines such as IL-6 increase in plasma. In this study, we examined the effects of steady flow on IL-6-induced endothelial responses. ECs exposed to IL-6 exhibited STAT3 activation via phosphorylation of Tyr705. However, when ECs were subjected to shear stress, shear force-dependent suppression of IL-6-induced STAT3 phosphorylation was observed. IL-6 treatment increased the phosphorylation of JAK2, an upstream activator of STAT3. Consistently, shear stress significantly reduced IL-6-induced JAK2 activation. Pretreatment of ECs with an inhibitor of MEK1 did not alter this suppression by shear stress, indicating that extracellular signal-regulated kinase (ERK1/2) was not involved. However, pretreatment of ECs with an endothelial nitric oxide synthase inhibitor (nitro-L-arginine methyl ester) attenuated this inhibitory effect of shear stress on STAT3 phosphorylation. Shear stress-treated ECs displayed decreased nuclear transmigration of STAT3 and reduced STAT3 binding to DNA. Intriguingly, ECs exposed to IL-6 entered the cell cycle, as evidenced by increasing G2/M phase, and shear stress to these ECs significantly reduced IL-6-induced cell cycle progression. STAT3-mediated IL-6-induced cell cycle was confirmed by the inhibition of the cell cycle in ECs infected with adenovirus carrying the inactive mutant of STAT3. Our study clearly shows that shear stress exerts its inhibitory regulation by suppressing the IL-6-induced JAK2/STAT3 signaling pathway and thus inhibits IL-6-induced EC proliferation. This shear force-dependent inhibition of IL-6-induced JAK2/STAT3 activation provides new insights into the vasoprotective effects of steady flow on ECs against cytokine-induced responses. shear stress; nitric oxide; cell cycle 相似文献
9.
10.
11.
miR‐181a and miR‐150 regulate dendritic cell immune inflammatory responses and cardiomyocyte apoptosis via targeting JAK1–STAT1/c‐Fos pathway 下载免费PDF全文
Jianbing Zhu Kang Yao Junjie Guo Hongtao Shi Leilei Ma Qian Wang Haibo Liu Wei Gao Aijun Sun Yunzeng Zou Junbo Ge 《Journal of cellular and molecular medicine》2017,21(11):2884-2895
The immune inflammatory response plays a crucial role in many cardiac pathophysiological processes, including ischaemic cardiac injury and the post‐infarction repair process. MicroRNAs (miRNAs) regulate the development and function of dendritic cells (DCs), which are key players in the initiation and regulation of immune responses; however, the underlying regulatory mechanisms remain unclear. Here, we used the supernatants of necrotic primary cardiomyocytes (Necrotic‐S) to mimic the myocardial infarction (MI) microenvironment to investigate the role of miRNAs in the regulation of DC‐mediated inflammatory responses. Our results showed that Necrotic‐S up‐regulated the DC maturation markers CD40, CD83 and CD86 and increased the production of inflammatory cytokines, concomitant with the up‐regulation of miR‐181a and down‐regulation of miR‐150. Necrotic‐S stimulation activated the JAK/STAT pathway and promoted the nuclear translocation of c‐Fos and NF‐κB p65, and silencing of STAT1 or c‐Fos suppressed Necrotic‐S‐induced DC maturation and inflammatory cytokine production. The effects of Necrotic‐S on DC maturation and inflammatory responses, its activation of the JAK/STAT pathway and the induction of cardiomyocyte apoptosis under conditions of hypoxia were suppressed by miR‐181a or miR‐150 overexpression. Taken together, these data indicate that miR‐181a and miR‐150 attenuate DC immune inflammatory responses via JAK1–STAT1/c‐Fos signalling and protect cardiomyocytes from cell death under conditions of hypoxia. 相似文献
12.
13.
14.
15.
16.
Kang Liu Tian Tian Yi Zheng Linghui Zhou Cong Dai Meng Wang Shuai Lin Yujiao Deng Qian Hao Zhen Zhai Zhijun Dai 《Journal of cellular and molecular medicine》2019,23(4):3040-3044
The prognosis of hepatocellular carcinoma (HCC) is poor because of high incidence of recurrence and metastasis. JAK/STAT signalling pathway regulates cell proliferation, apoptosis, differentiation and migration and epithelial‐mesenchymal transition (EMT) is also considered to contribute to invasion and metastasis of epithelial malignant tumours. Scutellarin is an active component found in many traditional Chinese herbs and has been regularly used in anti‐inflammatory and antitumour medicine. This study aimed to identify the effect of scutellarin and its possible mechanism of action in HCC cells. Proliferation, colony‐forming, apoptosis and cell migration assays were used to examine the effect of scutellarin on HCC cells. Quantitative real‐time PCR and Western blotting were performed to study the molecular mechanisms of action of scutellarin. Light and electron microscopy and immunofluorescence analysis were performed to study the effect of scutellarin on cellular mechanics. We show that scutellarin potentially suppresses invasiveness of HepG2 and MHCC97‐H cells in vitro by remodelling their cytoskeleton. The molecular mechanism behind it might be the inhibition of the EMT process, which could be attributed to the down‐regulation of the JAK2/STAT3 pathway. These findings may provide new clinical ideas for the treatment of liver cancer. 相似文献
17.
18.
Zang Y Yu LF Pang T Fang LP Feng X Wen TQ Nan FJ Feng LY Li J 《The Journal of biological chemistry》2008,283(10):6201-6208
Neural stem cell differentiation and the determination of lineage decision between neuronal and glial fates have important implications in the study of developmental, pathological, and regenerative processes. Although small molecule chemicals with the ability to control neural stem cell fate are considered extremely useful tools in this field, few were reported. AICAR is an adenosine analog and extensively used to activate AMP-activated protein kinase (AMPK), a metabolic "fuel gauge" of the biological system. In the present study, we found an unrecognized astrogliogenic activity of AICAR on not only immortalized neural stem cell line C17.2 (C17.2-NSC), but also primary neural stem cells (NSCs) derived from post-natal (P0) rat hippocampus (P0-NSC) and embryonic day 14 (E14) rat embryonic cortex (E14-NSC). However, another AMPK activator, Metformin, did not alter either the C17.2-NSC or E14-NSC undifferentiated state although both Metformin and AICAR can activate the AMPK pathway in NSC. Furthermore, overexpression of dominant-negative mutants of AMPK in C17.2-NSC was unable to block the gliogenic effects of AICAR. We also found AICAR could activate the Janus kinase (JAK) STAT3 pathway in both C17.2-NSC and E14-NSC but Metformin fails. JAK inhibitor I abolished the gliogenic effects of AICAR. Taken together, these results suggest that the astroglial differentiation effect of AICAR on neural stem cells was acting independently of AMPK and that the JAK-STAT3 pathway is essential for the gliogenic effect of AICAR. 相似文献
19.