首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mucins provide a protective barrier for epithelial surfaces, and their overexpression in tumors has been implicated in malignancy. We have previously demonstrated that Muc4, a transmembrane mucin that promotes tumor growth and metastasis, physically interacts with the ErbB2 receptor tyrosine kinase and augments receptor tyrosine phosphorylation in response to the neuregulin-1beta (NRG1beta) growth factor. In the present study we demonstrate that Muc4 expression in A375 human melanoma cells, as well as MCF7 and T47D human breast cancer cells, enhances NRG1beta signaling through the phosphatidylinositol 3-kinase pathway. In examining the mechanism underlying Muc4-potentiated ErbB2 signaling, we found that Muc4 expression markedly augments NRG1beta binding to A375 cells without altering the total quantity of receptors expressed by the cells. Cell-surface protein biotinylation experiments and immunofluorescence studies suggest that Muc4 induces the relocalization of the ErbB2 and ErbB3 receptors from intracellular compartments to the plasma membrane. Moreover, Muc4 interferes with the accumulation of surface receptors within internal compartments following NRG1beta treatment by suppressing the efficiency of receptor internalization. These observations suggest that transmembrane mucins can modulate receptor tyrosine kinase signaling by influencing receptor localization and trafficking and contribute to our understanding of the mechanisms by which mucins contribute to tumor growth and progression.  相似文献   

2.
Muc4 serves as an intramembrane ligand for the receptor tyrosine kinase ErbB2. The time to complex formation and the stoichiometry of the complex were determined to be <15 min and 1:1 by analyses of Muc4 and ErbB2 coexpressed in insect cells and A375 tumor cells. In polarized CACO-2 cells, Muc4 expression causes relocalization of ErbB2, but not its heterodimerization partner ErbB3, to the apical cell surface, effectively segregating the two receptors. The apically located ErbB2 is phosphorylated on tyrosines 1139 and 1248. The phosphorylated ErbB2 in CACO-2 cells recruits the cytoplasmic adaptor protein Grb2, consistent with previous studies showing phosphotyrosine 1139 to be a Grb2 binding site. To address the issue of downstream signaling from apical ErbB2, we analyzed the three MAPK pathways of mammalian cells, Erk, p38, and JNK. Consistent with the more differentiated phenotype of the CACO-2 cells, p38 phosphorylation was robustly increased by Muc4 expression, with a consequent activation of Akt. In contrast, Erk and JNK phosphorylation was not changed. The ability of Muc4 to segregate ErbB2 and other ErbB receptors and to alter downstream signaling cascades in polarized epithelial cells suggests that it has a role in regulating ErbB2 in differentiated epithelia.  相似文献   

3.
4.
The suppressive effect of rapamycin on T cells has been extensively studied, but its influence on the function of APC is less clear. The data in this study demonstrated that immunostimulatory activity of B10 (H2(b)) dendritic cells (DC) exposed to rapamycin (rapa-DC) was markedly suppressed as evidenced by the induction of low proliferative responses and specific CTL activity in allogeneic (C3H, H2(k)) T cells. Administration of rapa-DC significantly prolonged survival of B10 cardiac allografts in C3H recipients. Treatment with rapamycin did not affect DC expression of MHC class II and costimulatory molecules or IL-12 production. Rapamycin did not inhibit DC NF-kappaB pathway, however, IL-12 signaling through Janus kinase 2/Stat4 activation was markedly suppressed. Indeed, Stat4(-/-) DC similarly displayed poor allostimulatory activity. The Stat4 downstream product, IFN-gamma, was also inhibited by rapamycin, but DC dysfunction could not solely be attributed to low IFN-gamma production as DC deficient in IFN-gamma still exhibited vigorous allostimulatory activity. Rapamycin did not affect DC IL-12R expression, but markedly suppressed IL-18Ralpha and beta expression, which may in turn down-regulate DC IL-12 autocrine activation.  相似文献   

5.
Even though the glycine conjugation pathway was one of the first metabolic pathways to be discovered, this pathway remains very poorly characterized. The bi‐substrate kinetic parameters of a recombinant human glycine N‐acyltransferase (GLYAT, E.C. 2.3.1.13) were determined using the traditional colorimetric method and a newly developed HPLC–ESI‐MS/MS method. Previous studies analyzing the kinetic parameters of GLYAT, indicated a random Bi–Bi and/or ping‐pong mechanism. In this study, the hippuric acid concentrations produced by the GLYAT enzyme reaction were analyzed using the allosteric sigmoidal enzyme kinetic module. Analyses of the initial rate (v) against substrate concentration plots, produced a sigmoidal curve (substrate activation) when the benzoyl‐CoA concentrations was kept constant, whereas the plot with glycine concentrations kept constant, passed through a maximum (substrate inhibition). Thus, human GLYAT exhibits mechanistic kinetic cooperativity as described by the Ferdinand enzyme mechanism rather than the previously assumed Michaelis–Menten reaction mechanism.  相似文献   

6.
7.
8.
《Chirality》2017,29(8):451-457
A major challenge in pharmaceuticals for clinical applications is to alter the solubility, stability, and toxicity of drug molecules in living systems. Cyclodextrins (CDs) have the ability to form host–guest inclusion complexes with pharmaceuticals for further development of new drug formulations. The inclusion complex of clomiphene citrate (CL), a poorly water‐soluble drug, with native β‐cyclodextrin (β‐CD) was characterized by a one and two‐dimensional nuclear magnetic resonance (NMR) spectroscopic approach and also by molecular docking techniques. Here we report NMR and a computational approach in preferential isomeric selection of CL, which exists in two stereochemical isomers, enclomiphene citrate (ENC; E isomer) and zuclomiphene citrate (ZNC; Z isomer) with β‐CD. β‐CD cavity protons, namely, H‐3′ and H‐5′, experienced shielding in the presence of CL. The aromatic ring protons of the CL molecule were observed to be deshielded in the presence of β‐CD. The stoichiometric ratio of the β‐CD:CL inclusion complex was observed by NMR and found to be 1:1. The overall binding constant of β‐CD:CL inclusion complexes was based on NMR chemical shifts and was calculated to be 50.21 M−1. The change in Gibb's free energy (∆G) was calculated to be −9.80 KJ mol−1. The orientation and structure of the β‐CD:CL inclusion complexes are proposed on the basis of NMR and molecular docking studies. 2D 1H‐1H ROESY confirmed the involvement of all three aromatic rings of CL in the inclusion complexation with β‐CD in the solution, confirming the multiple equilibria between β‐CD and CL. Molecular docking and 2D 1H‐1H ROESY provide insight into the inclusion complexation of two isomers of CL into the β‐CD cavity. A molecular docking technique further provided the different binding affinities of the E and Z isomers of CL with β‐CD and confirmed the preference of the Z isomer binding for β‐CD:CL inclusion complexes. The study indicates that the formation of a hydrogen bond between –O– of CL and the hydrogen atom of the hydroxyl group of β‐CD was the main factor for noncovalent β‐CD:CL inclusion complex formation and stabilization in the aqueous phase.  相似文献   

9.
10.
11.
12.
13.
In this paper, oscillating chemiluminescence (CL), 1,10‐phenanthroline H2O2–KSCN–CuSO4–NaOH system, was studied in a batch reactor. The system described is a novel, slowly damped oscillating CL system, generated by coupling the well‐known Epstein–Orban, H2O2–KSCN–CuSO4–NaOH chemical oscillator reaction with the CL reaction involving the oxidation of 1,10‐phenanthroline by hydrogen peroxide, catalyzed by copper(II) in alkaline medium. In this system, the CL reaction acts as a detector or indicator system of the far‐from‐equilibrium dynamic system. Narrow and slightly asymmetric light pulses of 1.2 s half‐width are emitted at 440 nm with an emitted light time of 200–1000 s, induction period of 3.5–357 s and oscillation period of 28–304 s depending on the reagent concentrations. In this report the effect of the concentration variation of components involved in the oscillating CL system on the induction period, the oscillation period and amplitude was investigated and the parameters were plotted with respect to reagent concentrations. Copper concentration showed a significant effect on the oscillation period. The possible mechanism for the oscillating CL reaction was also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Hydroxysteroid dehydrogenases are of great interest as biocatalysts for transformations involving steroid substrates. They feature a high degree of stereo‐ and regio‐selectivity, acting on a defined atom with a specific configuration of the steroid nucleus. The crystal structure of 7β‐hydroxysteroid dehydrogenase from Collinsella aerofaciens reveals a loop gating active‐site accessibility, the bases of the specificity for NADP+, and the general architecture of the steroid binding site. Comparison with 7α‐hydroxysteroid dehydrogenase provides a rationale for the opposite stereoselectivity. The presence of a C‐terminal extension reshapes the substrate site of the β‐selective enzyme, possibly leading to an inverted orientation of the bound substrate. Proteins 2016; 84:859–865. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
16.
The interactions of β2 glycoprotein I (B2GPI) with the receptors of the low‐density lipoprotein receptor (LDLR) family are implicated in the clearance of negatively charged phospholipids and apoptotic cells and, in the presence of autoimmune anti‐B2GPI antibodies, in cell activation, which might play a role in the pathology of antiphospholipid syndrome (APS). The ligand‐binding domains of the lipoprotein receptors consist of multiple homologous LA modules connected by flexible linkers. In this study, we investigated at the atomic level the features of the LA modules required for binding to B2GPI. To compare the binding interface in B2GPI/LA complex to that observed in the high‐resolution co‐crystal structure of the receptor associated protein (RAP) with a pair of LA modules 3 and 4 from the LDLR, we used LA4 in our studies. Using solution NMR spectroscopy, we found that LA4 interacts with B2GPI and the binding site for B2GPI on the 15N‐labeled LA4 is formed by the calcium coordinating residues of the LA module. We built a model for the complex between domain V of B2GPI (B2GPI‐DV) and LA4 without introducing any experimentally derived constraints into the docking procedure. Our model, which is in the agreement with the NMR data, suggests that the binding interface of B2GPI for the lipoprotein receptors is centered at three lysine residues of B2GPI‐DV, Lys 308, Lys 282, and Lys317. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
New insights into the mechanism of protein-protein association   总被引:4,自引:0,他引:4  
Selzer T  Schreiber G 《Proteins》2001,45(3):190-198
Association of a protein complex follows a two-step mechanism, with the first step being the formation of an encounter complex that evolves into the final complex. Here, we analyze recent experimental data of the association of TEM1-beta-lactamase with BLIP using theoretical calculations and simulation. We show that the calculated Debye-Hückel energy of interaction for a pair of proteins during association resembles an energy funnel, with the final complex at the minima. All attraction is lost at inter-protein distances of 20 A, or rotation angles of >60 degrees from the orientation of the final complex. For faster-associating protein complexes, the energy funnel deepens and its volume increases. Mutations with the largest impact on association (hotspots for association) have the largest effect on the size and depth of the energy funnel. Analyzing existing evidence, we suggest that the transition state along the association pathway is the formation of the final complex from the encounter complex. Consequently, pairs of proteins forming an encounter complex will tend to dissociate more readily than to evolve into the final complex. Increasing directional diffusion by increasing favorable electrostatic attraction results in a faster forming and slower dissociating encounter complex. The possible applicability of electrostatic calculations for protein-protein docking is discussed.  相似文献   

18.
19.
Some estrogen receptor‐α (ERα)‐targeted breast cancer therapies such as tamoxifen have tissue‐selective or cell‐specific activities, while others have similar activities in different cell types. To identify biophysical determinants of cell‐specific signaling and breast cancer cell proliferation, we synthesized 241 ERα ligands based on 19 chemical scaffolds, and compared ligand response using quantitative bioassays for canonical ERα activities and X‐ray crystallography. Ligands that regulate the dynamics and stability of the coactivator‐binding site in the C‐terminal ligand‐binding domain, called activation function‐2 (AF‐2), showed similar activity profiles in different cell types. Such ligands induced breast cancer cell proliferation in a manner that was predicted by the canonical recruitment of the coactivators NCOA1/2/3 and induction of the GREB1 proliferative gene. For some ligand series, a single inter‐atomic distance in the ligand‐binding domain predicted their proliferative effects. In contrast, the N‐terminal coactivator‐binding site, activation function‐1 (AF‐1), determined cell‐specific signaling induced by ligands that used alternate mechanisms to control cell proliferation. Thus, incorporating systems structural analyses with quantitative chemical biology reveals how ligands can achieve distinct allosteric signaling outcomes through ERα.  相似文献   

20.
The regulation of DJ‐1 on AR signaling plays an important role in the pathogenesis of prostate cancer (PCa). DJ‐1 could alter autophagy and regulate Beclin1‐involved autophagy response through JNK‐dependent pathway. JNK is known to mediate autophagy through Bcl2–Beclin1 complex. Therefore, this study aimed to investigate the significance of autophagy in DJ‐1‐modulated PCa cells. The current studies showed that DJ‐1 overexpression in LNCaP decreased LC3 transformation and autophagosome formation. However, DJ‐1 knockdown exerted the opposite effect. Moreover, DJ‐1 silencing inhibited survival and promoted death in LNCaP, which was recovered by autophagy inhibition with 3‐MA. In addition, DJ‐1 overexpression inhibited the phosphorylation of JNK and Bcl2, and the dissociation of Beclin1 and Bcl2; while the effect of silencing DJ‐1 was completely opposite. More important, JNK activated by anisimycin inhibited the proliferation and promoted death of DJ‐1‐overexpressed LNCaP while increasing LC3 transformation and LC3‐puncta formation, but these results were reversed by the decrease of Beclin1 (by spautin‐1). In contrast, when DJ‐1 was silenced, the death of LNCaP, LC3 transformation, and LC3‐puncta formation were inhibited by JNK inhibitor SP600125, which promoted cell proliferation. However, Bcl2 inhibition (by ABT737) reversed all the effects of SP600125. Our results suggested that DJ‐1 in PCa cells could promote the growth of PCa through autophagy inhibition, and JNK–Bcl2–Beclin1 signaling played an important role in it. The study provided new insights into the role of DJ‐1 in the development of PCa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号