首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
B lymphocytes express multiple TLRs that regulate their cytokine production. We investigated the effect of TLR4 and TLR9 activation on receptor activator of NF‐κB ligand (RANKL) expression by rat spleen B cells. Splenocytes or purified spleen B cells from Rowett rats were cultured with TLR4 ligand Escherichia coli LPS and/or TLR9 ligand CpG‐oligodeoxynucleotide (CpG‐ODN) for 2 days. RANKL mRNA expression and the percentage of RANKL‐positive B cells were increased in rat splenocytes challenged by E. coli LPS alone. The increases were less pronounced when cells were treated with both CpG‐ODN and E. coli LPS. Microarray analysis showed that expressions of multiple cyclin‐dependent kinase (CDK) pathway‐related genes were up‐regulated only in cells treated with both E. coli LPS and CpG‐ODN. This study suggests that CpG‐ODN inhibits LPS‐induced RANKL expression in rat B cells via regulation of the CDK pathway.  相似文献   

2.
It has been long recognised that activation of toll‐like receptors (TLRs) induces autophagy to restrict intracellular bacterial growth. However, the mechanisms of TLR‐induced autophagy are incompletely understood. Salmonella Typhimurium is an intracellular pathogen that causes food poisoning and gastroenteritis in humans. Whether TLR activation contributes to S. Typhimurium‐induced autophagy has not been investigated. Here, we report that S. Typhimurium and TLRs shared a common pathway to induce autophagy in macrophages. We first showed that S. Typhimurium‐induced autophagy in a RAW264.7 murine macrophage cell line was mediated by the AMP‐activated protein kinase (AMPK) through activation of the TGF‐β‐activated kinase (TAK1), a kinase activated by multiple TLRs. AMPK activation led to increased phosphorylation of Unc‐51‐like autophagy activating kinase (ULK1) at S317 and S555. ULK1 phosphorylation at these two sites in S. Typhimurium‐infected macrophages overrode the inhibitory effect of mTOR on ULK1 activity due to mTOR‐mediated ULK1 phosphorylation at S757. Lipopolysaccharide (LPS), flagellin, and CpG oligodeoxynucleotide, which activate TLR4, TLR5, and TLR9, respectively, increased TAK1 and AMPK phosphorylation and induced autophagy in RAW264.7 cells and in bone marrow‐derived macrophages. However, LPS was unable to induce TAK1 and AMPK phosphorylation and autophagy in TLR4‐deficient macrophages. TAK1 and AMPK‐specific inhibitors blocked S. Typhimurium‐induced autophagy and xenophagy and increased the bacterial growth in RAW264.7 cells. These observations collectively suggest that activation of the TAK1–AMPK axis through TLRs is essential for S. Typhimurium‐induced autophagy and that TLR signalling cross‐activates the autophagic pathway to clear intracellular bacteria.  相似文献   

3.
4.
Toll‐like receptors (TLRs) are an important part of the innate immune system, acting as a first line of defense against many invading pathogens. The ligand known to bind Gallus toll‐like receptor 21 (gTLR21) is the unmethylated cytosine phosphate guanine dideoxy nucleotide motif; however, the evolutionary characteristics and structural biology of gTLR21 are poorly elaborated. Our results suggest that gTLR21 is phylogenetically and evolutionarily related to the TLR11 family and is perhaps a close ortholog of the Mus TLR13. Structural biology of homology modeling of the gTLR21 ectodomain structure suggests that it has no Z‐loop like that seen in Mus TLR9. The cytosolic toll‐IL‐1 receptor region of gTLR21 contains a central 4‐stranded parallel β‐sheet (βA‐βD) surrounded by 5 α‐helices (αA‐αE) on both sides, a highly conserved structure also seen in other TLRs. Molecular docking analysis reveals that the gTLR21 ectodomain has the potential to distinguish between different ligands. Homodimer analysis results also suggest that Phe842 and Pro844 of the BB loop and Cys876 of the αC helix in gTLR21 are conserved in other cytosolic toll‐IL‐1 receptor domains of other TLRs and may contribute to the docking of homodimers. Our study on the evolutionary characteristics and structural biology of gTLR21 reveals that the molecule may have a broader role to play in innate immune system; however, further experimental validation is required to confirm our findings.  相似文献   

5.
6.
Dong Gao  Wang Li 《Proteins》2017,85(1):3-9
Toll‐like receptors (TLRs) recognize common structural patterns in diverse microbial molecules and play central roles in the innate immune response. The structures of extracellular domains and their ligand complexes of several TLRs have been determined by X‐ray crystallography. Here, we discuss recent advances on structures and activation mechanisms of TLRs. Despite the differences in interaction areas of ligand with TLRs, the extracellular domains of TLRs all adopt horseshoe‐shaped structures and the overall M‐shape of the TLR–ligand complexes is strikingly similar. The structural rearrangement information of TLRs sheds new light on their ligand‐recognition and ‐activation mechanisms. Proteins 2016; 85:3–9. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
Telocytes, newly discovered in the last decade, are interstitial cells found in numerous organs, with multiple proposed potential biological functions. Toll‐like receptors (TLRs) play an important role in innate and adaptive immunity by recognizing pathogen‐associated molecular patterns (PAMPs). However, it is still unknown whether telocytes express these innate receptors. We sought to determine the expression and role of TLRs in telocytes. In our study, we primarily detected TLR1‐9 expression in telocytes. The proliferation, apoptosis and immunoregulatory activity of telocytes activated with or without TLR ligands were determined. Our results showed that purified telocytes expressed TLR2, TLR3 and TLR5. In particular, telocytes expressed high levels of TLR2 as observed using flow cytometry. When we stimulated telocytes with TLR2 or TLR3 agonists (Pam3CSK4, PolyI:C), iNOS expression was greatly increased after Pam3CSK4 treatment. Additionally, telocyte proliferation was reduced and cell apoptosis was increased after TLR agonist stimulation. A co‐culture experiment showed that supernatant from telocytes pretreated with Pam3CSK4 inhibited T cell activation much more than that from untreated telocytes and this effect was mediated by iNOS. Overall, our results demonstrated TLR expression on telocytes for the first time and provided evidence of an immunoregulatory role of telocytes, indicating their clinical potential.  相似文献   

8.
Toll-like receptors (TLRs), a family of pattern recognition receptors, recognize and respond to conserved components of microbes and play a crucial role in both innate and adaptive immunity. In addition to binding exogenous ligands derived from pathogens, TLRs interact with endogenous molecules released from damaged tissues or dead cells and regulate many sterile inflammation processes. Putative endogenous TLR ligands include proteins and peptides, polysaccharides and proteoglycan, nucleic acids and phospholipids, which are cellular components, particularly extracellular matrix degradation products. Accumulating evidence demonstrates that endogenous ligand-mediated TLR signalling is involved in pathological conditions such as tissue injury, repair and regeneration; autoimmune diseases and tumorigenesis. The ability of TLRs to recognize endogenous stimulators appears to be essential to their function in regulating non-infectious inflammation. In this review, we summarize current knowledge of endogenous TLR ligands and discuss the biological significance of TLR signalling triggered by endogenous ligands in several sterile inflammation conditions.  相似文献   

9.
MicroRNAs (miRNAs) are reported as vital participators in the pathophysiological course of neuropathic pain. However, the underlying mechanisms of the functional roles of miRNAs in neuropathic pain are largely unknown. This study was designed to explore the potential role of miR‐150 in regulating the process of neuropathic pain in a rat model established by chronic sciatic nerve injury (CCI). Overexpression of miR‐150 greatly alleviated neuropathic pain development and reduced inflammatory cytokine expression, including COX‐2, interleukin IL‐6, and tumor necrosis factor (TNF)‐α in CCI rats. By bioinformatic analysis, 3′‐untranslated region (UTR) of Toll‐like receptor (TLR5) was predicted to be a target of miR‐150. TLR5 commonly serves as an important regulator of inflammation. Overexpression of miR‐150 significantly suppressed the expression of TLR5 in vitro and in vivo. Furthermore, upregulation of TLR5 decreased the miR‐150 expression and downregulation of TLR5 increased miR‐150, respectively. Overexpression of TLR5 significantly reversed the miR‐150‐induced suppressive effects on neuropathic pain. In conclusion, our current study indicates that miR‐150 may inhibit neuropathic pain development of CCI rats through inhibiting TLR5‐mediated neuroinflammation. Our findings suggest that miR‐150 may provide a novel therapeutic target for neuropathic pain treatment.  相似文献   

10.
11.
Apoptosis of implanted mesenchymal stem cells (MSCs) limits the efficiency of MSC therapy. Recent studies showed the ligands of Toll-like receptors (TLRs) could control the function of these cells. We have investigated the effect of lipopolysaccharides (LPS), a ligand of TLR4, on the survival of MSCs and explored the roles of TLR4 and PI3K/Akt. H2O2/serum deprivation(H2O2/SD) induced apoptosis of MSCs but LPS-preconditioning (1.0 μg/ml) protected MSCs from H2O2/SD-induced apoptosis and promoted their proliferation. Western blotting showed that 1.0 μg/ml LPS enhanced phosphorylation of both Akt at Ser 473 and nuclear factor-kappa B (NF-κB) p65 at Ser 536. However, the protective effects of LPS on survival were not observed in TLR4lps-del MSCs. The results suggest appropriate treatments with LPS can protect MSCs from oxidative stress-induced apoptosis and improve the survival of MSCs via the TLR4 and PI3K/Akt pathway.  相似文献   

12.
13.
Oral keratinocytes and fibroblasts may be the first line of host defense against oral microorganisms. Here, the contention that oral keratinocytes and fibroblasts recognize microbial components via Toll‐like receptors (TLRs) and participate in development of oral inflammation was examined. It was found that immortalized oral keratinocytes (RT7), fibroblasts (GT1) and primary cells express mRNA of TLRs 1–10. Interleukin‐8 (IL‐8) production by RT7 cells was induced by treatment with TLRs 1–9 with the exception of TLR7 agonist, whereas GT1 cells were induced to produce IL‐8 by all TLR agonists tested except for TLR7 and TLR9. GT1 cells showed increased CXCL10 production following treatment with agonists for TLR1/2, TLR3, TLR4, and TLR5, whereas only those for TLR3 and TLR5 increased CXCL10 production in RT7 cells. Moreover, TLR agonists differentially regulated tumor necrosis factor‐alpha‐induced IL‐8 and CXCL10 production by the tested cell types. These findings suggest that recognition of pathogenic microorganisms in oral keratinocytes and fibroblasts by TLRs may have important roles in orchestrating host immune responses via production of various chemokines.  相似文献   

14.
We previously reported that the canonical innate immune receptor toll‐like receptor 4 (TLR4) is critical in maintaining lung integrity. However, the molecular mechanisms via which TLR4 mediates its effect remained unclear. In the present study, we identified distinct contributions of lung endothelial cells (Ec) and epithelial cells TLR4 to pulmonary homeostasis using genetic‐specific, lung‐ and cell‐targeted in vivo methods. Emphysema was significantly prevented via the reconstituting of human TLR4 expression in the lung Ec of TLR4?/? mice. Lung Ec‐silencing of TLR4 in wild‐type mice induced emphysema, highlighting the specific and distinct role of Ec‐expressed TLR4 in maintaining lung integrity. We also identified a previously unrecognized role of TLR4 in preventing expression of p16INK4a, a senescence‐associated gene. Lung Ec‐p16INK4a‐silencing prevented TLR4?/? induced emphysema, revealing a new functional role for p16INK4ain lungs. TLR4 suppressed endogenous p16INK4a expression via HDAC2‐mediated deacetylation of histone H4. These findings suggest a novel role for TLR4 in maintaining of lung homeostasis via epigenetic regulation of senescence‐related gene expression.  相似文献   

15.
16.
It remains unclear whether and how cardiomyocytes contribute to the inflammation in chronic heart failure (CHF). We recently reviewed the capacity of cardiomyocytes to initiate inflammation, by means of expressing certain immune receptors such as toll‐like receptors (TLRs) that respond to pathogen‐ and damage‐associated molecular patterns (PAMP and DAMP). Previous studies observed TLR4‐mediated inflammation within days of myocardial infarction (MI). This study examined TLR4 expression and function in cardiomyocytes of failing hearts after 4 weeks of MI in rats. The increases of TLR4 mRNA and proteins, as well as inflammatory cytokine production, were observed in both the infarct and remote myocardium. Enhanced immunostaining for TLR4 was observed in cardiomyocytes but not infiltrating leucocytes. The injection of lentivirus shRNA against TLR4 into the infarcted heart decreased inflammatory cytokine production and improved heart function in vivo. Accordingly, in cardiomyocytes isolated from CHF hearts, increases of TLR4 mRNA and proteins were detected. More robust binding of TLR4 with lipopolysaccharide (LPS), a PAMP ligand for TLR4, and heat shock protein 60 (HSP60), a DAMP ligand for TLR4, was observed in CHF cardiomyocytes under a confocal microscope. The maximum binding capacity (Bmax) of TLR4 was increased for LPS and HSP60, whereas the binding affinity (Kd) was not significantly changed. Furthermore, both LPS and HSP60 induced more robust production of inflammatory cytokines in CHF cardiomyocytes, which was reduced by TLR4‐blocking antibodies. We conclude that the expression, ligand‐binding capacity and pro‐inflammatory function of cardiomyocyte TLR4 are up‐regulated after long‐term MI, which promote inflammation and exacerbate heart failure.  相似文献   

17.
Free fatty acid receptor G protein‐coupled receptor 120 (GPR120) is highly expressed in macrophages and was reported to inhibit lipopolysaccharide (LPS)‐stimulated cytokine expression. Under inflammation, macrophages exhibit striking functional changes, but changes in GPR120 expression and signaling are not known. In this study, the effects of LPS treatment on macrophage GPR120 expression and activation were investigated. The results showed that LPS inhibited GPR120 expression in mouse macrophage cell line Ana‐1 cells. Moreover, LPS treatment inhibited GPR120 expression in mouse alveolar macrophages both in vitro and in vivo. The inhibitory effect of LPS on GPR120 expression was blocked by Toll‐like receptor 4 (TLR4) inhibitor TAK242 and p38 mitogen‐activated protein kinase inhibitor LY222820, but not by ERK1/2 inhibitor U0126 and c‐Jun N‐terminal kinase inhibitor SP600125. LPS‐induced inhibition of GPR120 expression was not attenuated by GPR120 agonists TUG891 and GW9508. TUG891 inhibited the phagocytosis of alveolar macrophages, and LPS treatment counteracted the effects of TUG891 on phagocytosis. These results indicate that pretreatment with LPS inhibits GPR120 expression and activation in macrophages. It is suggested that LPS‐induced inhibition of GPR120 expression is a reaction enhancing the LPS‐induced pro‐inflammatory response of macrophages.  相似文献   

18.
The renin-angiotensin-aldosterone system plays a pivotal role in the regulation of salt and water homeostasis. Here, we demonstrate the expression and functional role of cGMP-dependent protein kinases (PKGs) in rat adrenal cortex. Expression of PKG II is restricted to adrenal zona glomerulosa (ZG) cells, whereas PKG I is localized to the adrenal capsule and blood vessels. Activation of the aldosterone system by a low sodium diet up-regulated the expression of PKG II, however, it did not change PKG I expression in adrenal cortex. Both, activation of PKG II in isolated ZG cell and adenoviral gene transfer of wild type PKG II into ZG cells enhanced aldosterone production. In contrast, inhibition of PKG II as well as infection with a PKG II catalytically inactive mutant had an inhibitory effect on aldosterone production. Steroidogenic acute regulatory (StAR) protein that regulates the rate-limiting step in steroidogenesis is a new substrate for PKG II and can be phosphorylated by PKG II in vitro at serine 55/56 and serine 99. Stimulation of aldosterone production by PKG II in contrast to stimulation by PKA did not activate StAR gene expression in ZG cells. The results presented indicate that PKG II activity in ZG cells is important for maintaining basal aldosterone production.  相似文献   

19.
Understanding the relative role of different evolutionary forces in shaping the level and distribution of functional genetic diversity among natural populations is a key issue in evolutionary and conservation biology. To do so accurately genetic data must be analysed in conjunction with an unambiguous understanding of the historical processes that have acted upon the populations. Here, we focused on diversity at toll‐like receptor (TLR) loci, which play a key role in the vertebrate innate immune system and, therefore, are expected to be under pathogen‐mediated selection. We assessed TLR variation within and among 13 island populations (grouped into three archipelagos) of Berthelot's pipit, Anthus berthelotii, for which detailed population history has previously been ascertained. We also compared the variation observed with that found in its widespread sister species, the tawny pipit, Anthus campestris. We found strong evidence for positive selection at specific codons in TLR1LA, TLR3 and TLR4. Despite this, we found that at the allele frequency level, demographic history has played the major role in shaping patterns of TLR variation in Berthelot's pipit. Levels of diversity and differentiation within and across archipelagos at all TLR loci corresponded very closely with neutral microsatellite variation and with the severity of the bottlenecks that occurred during colonization. Our study shows that despite the importance of TLRs in combating pathogens, demography can be the main driver of immune gene variation within and across populations, resulting in patterns of functional variation that can persist over evolutionary timescales.  相似文献   

20.
Low‐density lipoprotein receptor‐related protein 1 (LRP1) is an endocytic receptor, which binds and internalizes diverse ligands such as activated α2‐macroglobulin (α2M*). LRP1 promotes intracellular signaling, which downstream mediates cellular proliferation and migration of different types of cells, including macrophages. Unlike the LDL receptor, LRP1 expression is not sensitive to cellular cholesterol levels but appears to be responsive to insulin. It has been previously demonstrated that insulin increases the cell surface presentation of LRP1 in adipocytes and hepatocytes, which is mediated by the intracellular PI3K/Akt signaling activation. The LRP1 protein distribution is similar to other insulin‐regulated cell surface proteins, including transferring receptor (Tfr). However, in macrophages, the insulin effect on the LRP1 distribution and expression is not well characterized. Considering that macrophages play a central role in the pathogenesis of atherosclerosis, herein we evaluate the effect of insulin on the cellular expression of LRP1 in J774 macrophages‐derived cells using Western blot and immunofluorescence microscopy. Our data demonstrate that insulin induces a significant decrease in the LRP1 protein content, without changing the specific mRNA level of this receptor. Moreover, insulin specifically affected the protein expression of LRP1 but not Tfr. The insulin‐induced protein degradation of LRP1 in J774 cells was mediated by the activation of the PI3K/Akt pathway and proteasomal system by an enhanced ubiquitin–receptor conjugation. The decreased content of LRP1 induced by insulin affected the cellular internalization of α2M*. Thus, we propose that the protein degradation of LRP‐1 induced by insulin in macrophages could have important effects on the pathogenesis of atherosclerosis. J. Cell. Biochem. 106: 372–380, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号