共查询到20条相似文献,搜索用时 15 毫秒
1.
LBH589 is one of the many histone deacetylase inhibitors (HDACi) that are currently in clinical trial. Despite their wide-spread use, there is little literature available describing the typical levels of histone acetylation in untreated peripheral blood, the treatment and storage of samples to retain optimal measurement of histone acetylation nor methods by which histone acetylation analysis may be monitored and measured during the course of a patient’s treatment. In this study, we have used cord or peripheral blood as a source of human leukocytes, performed a comparative analysis of sample processing methods and developed a flow cytometric method suitable for monitoring histone acetylation in isolated lymphocytes and liquid tumors. Western blotting and immunohistochemistry techniques have also been addressed. We have tested these methods on blood samples collected from four patients treated with LBH589 as part of an Australian Children’s Cancer Clinical Trial (CLBH589AAU03T) and show comparable results when comparing in vitro and in vivo data. This paper does not seek to correlate histone acetylation levels in peripheral blood with clinical outcome but describes methods of analysis that will be of interest to clinicians and scientists monitoring the effects of HDACi on histone acetylation in blood samples in clinical trials or in related research studies. 相似文献
2.
《Epigenetics》2013,8(8):875-882
LBH589 is one of the many histone deacetylase inhibitors (HDACi) that are currently in clinical trial. Despite their wide-spread use, there is little literature available describing the typical levels of histone acetylation in untreated peripheral blood, the treatment and storage of samples to retain optimal measurement of histone acetylation nor methods by which histone acetylation analysis may be monitored and measured during the course of a patient’s treatment. In this study, we have used cord or peripheral blood as a source of human leukocytes, performed a comparative analysis of sample processing methods and developed a flow cytometric method suitable for monitoring histone acetylation in isolated lymphocytes and liquid tumors. Western blotting and immunohistochemistry techniques have also been addressed. We have tested these methods on blood samples collected from four patients treated with LBH589 as part of an Australian Children’s Cancer Clinical Trial (CLBH589AAU03T) and show comparable results when comparing in vitro and in vivo data. This paper does not seek to correlate histone acetylation levels in peripheral blood with clinical outcome but describes methods of analysis that will be of interest to clinicians and scientists monitoring the effects of HDACi on histone acetylation in blood samples in clinical trials or in related research studies. 相似文献
3.
4.
Propofol exposure during early gestation impairs learning and memory in rat offspring by inhibiting the acetylation of histone 下载免费PDF全文
Jiamei Lin Shengqiang Wang Yunlin Feng Weihong Zhao Weilu Zhao Foquan Luo Namin Feng 《Journal of cellular and molecular medicine》2018,22(5):2600-2611
Propofol is widely used in clinical practice, including non‐obstetric surgery in pregnant women. Previously, we found that propofol anaesthesia in maternal rats during the third trimester (E18) caused learning and memory impairment to the offspring rats, but how about the exposure during early pregnancy and the underlying mechanisms? Histone acetylation plays an important role in synaptic plasticity. In this study, propofol was administered to the pregnant rats in the early pregnancy (E7). The learning and memory function of the offspring were tested by Morris water maze (MWM) test on post‐natal day 30. Two hours before each MWM trial, histone deacetylase 2 (HDAC2) inhibitor, suberoylanilide hydroxamic acid (SAHA), Senegenin (SEN, traditional Chinese medicine), hippyragranin (HGN) antisense oligonucleotide (HGNA) or vehicle were given to the offspring. The protein levels of HDAC2, acetylated histone 3 (H3) and 4 (H4), cyclic adenosine monophosphate (cAMP) response element‐binding protein (CREB), N‐methyl‐D‐aspartate receptor (NMDAR) 2 subunit B (NR2B), HGN and synaptophysin in offspring's hippocampus were determined by Western blot or immunofluorescence test. It was discovered that infusion with propofol in maternal rats on E7 leads to impairment of learning and memory in offspring, increased the protein levels of HDAC2 and HGN, decreased the levels of acetylated H3 and H4 and phosphorylated CREB, NR2B and synaptophysin. HDAC2 inhibitor SAHA, Senegenin or HGN antisense oligonucleotide reversed all the changes. Thus, present results indicate exposure to propofol during the early gestation impairs offspring's learning and memory via inhibiting histone acetylation. SAHA, Senegenin and HGN antisense oligonucleotide might have therapeutic value for the adverse effect of propofol. 相似文献
5.
Rana Shafabakhsh Esmat Aghadavod Majid Ghayour-Mobarhan Gordon Ferns Zatollah Asemi 《Journal of cellular physiology》2019,234(6):7839-7846
Retinopathy, characterized by an alteration of the retinal microvasculature, is a common complication of diabetes mellitus. These changes can cause increased permeability and alter endothelial cell proliferation, edema, and abnormal neovascularization and eventually result in blindness. The pathogenesis of diabetic retinopathy (DR) is complicated, involving many factors/mediators such as genetic susceptibility, microRNAs, and cytokines. One of the factors involved in DR pathogenesis is epigenetic changes that can have a key role in the regulation of gene expression; these include microRNAs, histone modifications, and methylation of DNA. The main epigenetic modifications are DNA methylation and posttranslational modifications of the histones. Generally, the studies on epigenetics can provide new opportunities to investigate the molecular basis of diseases with complicated pathogenesis, including DR, and provide essential insights into the potential design of strategies for its treatment. The aim of this study is an investigation of DR pathogenesis and epigenetic modifications that involve in DR development. 相似文献
6.
Quisinostat treatment improves histone acetylation and developmental competence of porcine somatic cell nuclear transfer embryos 下载免费PDF全文
Long Jin Qing Guo Hai‐Ying Zhu Xiao‐Xu Xing Guang‐Lei Zhang Mei‐Fu Xuan Qi‐Rong Luo Zhao‐Bo Luo Jun‐Xia Wang Xi‐Jun Yin Jin‐Dan Kang 《Molecular reproduction and development》2017,84(4):340-346
7.
Nidhi Kumari Aditi Karmakar Senthil kumar Ganesan 《Journal of cellular physiology》2020,235(3):1933-1947
Diabetic retinopathy (DR) is the leading cause of visual impairment in adults of working age (20–65 years) in developed countries. The metabolic memory phenomena (persistent effect of a glycemic insult even after retrieved) associated with it has increased the risk of developing the complication even after the termination of the glycemic insult. Hence, the need for finding early diagnosis and treatment options has been of great concern. Epigenetic modifications which generally occur during the beginning stages of the disease are responsible for the metabolic memory effect. Therefore, the therapy based on the reversal of the associated epigenetic mechanism can bring new insight in the area of early diagnosis and treatment mechanism. This review discusses the diabetic retinopathy, its pathogenesis, current treatment options, need of finding novel treatment options, and different epigenetic alterations associated with DR. However, the main focus is emphasized on various epigenetic modifications particularly DNA methylation which are responsible for the initiation and progression of diabetic retinopathy and the use of different epigenetic inhibitors as a novel therapeutic option for DR. 相似文献
8.
为了探索组蛋白乙酰化对吗啡成瘾记忆相关分子表达调控机制,文章选取健康成年雄性SD大鼠34只,随机分为正常对照组(n = 6)及基底外侧杏仁核(Basolateral amygdala, BLA)颅内定位手术组(n =28)。在条件性位置偏爱(Conditioned place preference, CPP)训练阶段,大鼠BLA内给予组蛋白去乙酰化酶抑制剂曲古抑菌素A(Trichostafin A, TSA)并且腹腔注射吗啡溶液(10.0 mg/kg),对照组给予相同体积的10%二甲基亚砜(Dimethyl sulfoxide,DMSO)或盐水。应用蛋白质印记方法,检测吗啡诱导大鼠CPP建立后BLA内组蛋白H3K14乙酰化和脑源性神经营养因子(Brain-derived neurotrophic factor, BDNF)蛋白表达水平。结果显示,腹腔注射10 mg/kg吗啡能成功建立CPP。吗啡、TSA联合给药组大鼠比单纯吗啡给药组大鼠表现出更强烈的CPP(P<0.0001)。吗啡和TSA都能使BLA内的组蛋白H3乙酰化水平和BDNF的表达显著增高(P < 0.0001),同时二者之间具有协同作用。结果表明,大鼠BLA内组蛋白乙酰化水平与吗啡成瘾记忆形成有关,抑制BLA内组蛋白去乙酰化酶(Histone deacetylases, HDACs)的活性可强化吗啡诱导的线索记忆的形成;大鼠BLA内BDNF参与了吗啡诱导的线索记忆的形成并可能受到组蛋白乙酰化的调控。 相似文献
9.
10.
Simon J. Hogg Olga Motorna Leonie A. Cluse Timothy M. Johanson Hannah D. Coughlan Ramya Raviram Robert M. Myers Matteo Costacurta Izabela Todorovski Lizzy Pijpers Stefan Bjelosevic Tobias Williams Shannon N. Huskins Conor J. Kearney Jennifer R. Devlin Zheng Fan Jafar S. Jabbari Ben P. Martin Ricky W. Johnstone 《Molecular cell》2021,81(10):2183-2200.e13
11.
12.
Changes in histone acetylation during mouse oocyte meiosis 总被引:11,自引:0,他引:11
We examined global changes in the acetylation of histones in mouse oocytes during meiosis. Immunocytochemistry with specific antibodies against various acetylated lysine residues on histones H3 and H4 showed that acetylation of all the lysines decreased to undetectable or negligible levels in the oocytes during meiosis, whereas most of these lysines were acetylated during mitosis in preimplantation embryos and somatic cells. When the somatic cell nuclei were transferred into enucleated oocytes, the acetylation of lysines decreased markedly. This type of deacetylation was inhibited by trichostatin A, a specific inhibitor of histone deacetylase (HDAC), thereby indicating that HDAC is able to deacetylate histones during meiosis but not during mitosis. Meiosis-specific deacetylation may be a consequence of the accessibility of HDAC1 to the chromosome, because HDAC1 colocalized with the chromosome during meiosis but not during mitosis. As histone acetylation is thought to play a role in propagating the gene expression pattern to the descendent generation during mitosis, and the gene expression pattern of differentiated oocytes is reprogrammed during meiosis to allow the initiation of a new program by totipotent zygotes of the next generation, our results suggest that the oocyte cytoplasm initializes a program of gene expression by deacetylating histones. 相似文献
13.
In mammals, the time period that follows fertilization is characterized by extensive chromatin remodeling, which enables epigenetic reprogramming of the gametes. Major changes in chromatin structure persist until the time of implantation, when the embryo develops into a blastocyst, which comprises the inner cell mass and the trophectoderm. Changes in DNA methylation, histone variant incorporation, and covalent modifications of the histones tails have been intensively studied during pre-implantation development. However, modifications within the core of the nucleosomes have not been systematically analyzed. Here, we report the first characterization and temporal analysis of 3 key acetylated residues in the core of the histone H3: H3K64ac, H3K122ac, and H3K56ac, all located at structurally important positions close to the DNA. We found that all 3 acetylations occur during pre-implantation development, but with different temporal kinetics. Globally, H3K64ac and H3K56ac were detected throughout cleavage stages, while H3K122ac was only weakly detectable during this time. Our work contributes to the understanding of the contribution of histone modifications in the core of the nucleosome to the “marking” of the newly established embryonic chromatin and unveils new modification pathways potentially involved in epigenetic reprogramming. 相似文献
14.
Human and mouse cells in culture were treated with various concentrations of sodium butyrate. Acid-extracted histones of control and butyrate-treated cells were analyzed by two-dimensional gel electrophoresis. All core histones of the control cells contained modified forms. All core histones of the butyrate-treated cells were hyperacetylated. Depending on the number of acetylation sites per molecule, each histone or histone variant exhibited a characteristic number of acetylated forms. This number was the same for each histone common in human and mouse cells treated with butyrate. Histones 2A.1, 2A.2, and 2A.X have two sites of inner acetylation; 2A.Z has 3; 2B's have 5; and each one of the H3 variants as well as H4 have 4. 相似文献
15.
HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics 总被引:16,自引:0,他引:16
Histone deacetylases (HDACs) and histone acetyl transferases (HATs) are two counteracting enzyme families whose enzymatic activity controls the acetylation state of protein lysine residues, notably those contained in the N-terminal extensions of the core histones. Acetylation of histones affects gene expression through its influence on chromatin conformation. In addition, several non-histone proteins are regulated in their stability or biological function by the acetylation state of specific lysine residues. HDACs intervene in a multitude of biological processes and are part of a multiprotein family in which each member has its specialized functions. In addition, HDAC activity is tightly controlled through targeted recruitment, protein-protein interactions and post-translational modifications. Control of cell cycle progression, cell survival and differentiation are among the most important roles of these enzymes. Since these processes are affected by malignant transformation, HDAC inhibitors were developed as antineoplastic drugs and are showing encouraging efficacy in cancer patients. 相似文献
16.
组蛋白去乙酰化酶抑制剂是近年来出现的一类新的抗肿瘤药物,在艾滋病等其他疾病中同样也受到关注。但是在基础和临床研究中,目前还缺乏统一可靠的组蛋白乙酰化水平的检测手段。本文利用全血和外周血单个核细胞,通过一系列的对比实验,比较了不同样品处理温度(冰上和室温)、破膜方法(细胞内因子染色破膜和核内因子染色破膜)、抗体剂量(抗体滴定)和抗体孵育时间(时间梯度)等实验条件对流式细胞术检测的影响,最终建立了一套基于流式细胞术的组蛋白乙酰化水平检测手段。同时,将优化后的流式细胞检测技术应用于西达本胺(目前国内唯一上市的组蛋白去乙酰化酶抑制剂)的体外实验和临床试验,结果均证明本文建立的组蛋白乙酰化流式细胞检测方法可以作为基础和临床研究中一个可靠、快速、便捷的检测手段。 相似文献
17.
Montserrat Perez-Salvia Laia Simó-Riudalbas Juan Ausió Manel Esteller 《Epigenetics》2015,10(5):446-451
The Barcelona Conference on Epigenetics and Cancer (BCEC) was held in Barcelona, Spain, on October 1st and 2nd, 2014. The meeting was co-organized by the Cancer Epigenetics and Biology Program (PEBC-IDIBELL) and B·Debate, an initiative of Biocat, with the support of "la Caixa" Foundation. The scientific committee was comprised of leading scientists in the field of epigenetics: Dr. Manel Esteller, director of PEBC-IDIBELL, Dr. Alejandro Vaquero and Dr. Esteban Ballestar, from PEBC-IDIBELL, Juan Ausió from the University of Victoria (Canada), and Marcus Buschbeck, from the Institute of Predictive and Personalized Medicine of Cancer (IMPPC), as BCEC series coordinator. This meeting was the second edition of the BCEC series, which was launched by 5 leading Barcelonan institutes to bring together leading investigators in the fields of epigenetics and chromatin research. The topics discussed during the meeting included the current challenges, opportunities, and perspectives surrounding the study of histone modifications (focusing in acetylation), chromatin structure and gene expression, and the involvement of histone acetylation in physiology and diseases, such as cancer or neurological diseases. 相似文献
18.
19.
Elisabet Cuyàs Salvador Fernández-Arroyo Jorge Joven 《Cell cycle (Georgetown, Tex.)》2016,15(24):3355-3361
The usage of metabolic intermediates as substrates for chromatin-modifying enzymes provides a direct link between the metabolic state of the cell and epigenetics. Because this metabolism-epigenetics axis can regulate not only normal but also diseased states, it is reasonable to suggest that manipulating the epigenome via metabolic interventions may improve the clinical manifestation of age-related diseases including cancer. Using a model of BRCA1 haploinsufficiency-driven accelerated geroncogenesis, we recently tested the hypothesis that: 1.) metabolic rewiring of the mitochondrial biosynthetic nodes that overproduce epigenetic metabolites such as acetyl-CoA should promote cancer-related acetylation of histone H3 marks; 2.) metformin-induced restriction of mitochondrial biosynthetic capacity should manifest in the epigenetic regulation of histone acetylation. We now provide one of the first examples of how metformin-driven metabolic shifts such as reduction of the 2-carbon epigenetic substrate acetyl-CoA is sufficient to correct specific histone H3 acetylation marks in cancer-prone human epithelial cells. The ability of metformin to regulate mitonuclear communication and modulate the epigenetic landscape in genomically unstable pre-cancerous cells might guide the development of new metabolo-epigenetic strategies for cancer prevention and therapy. 相似文献
20.
Epigenetic control of early neurodegenerative events in diabetic retinopathy by the histone deacetylase SIRT6 下载免费PDF全文
Ada Yeste Francisco J. Quintana Debra Toiber Raul Mostoslavsky Dafne M. Silberman 《Journal of neurochemistry》2018,144(2):128-138