共查询到20条相似文献,搜索用时 0 毫秒
1.
J. Neurochem. (2012) 122, 1145-1154. ABSTRACT: Cooling temperatures may modify action potential firing properties to alter sensory modalities. Herein, we investigated how cooling temperatures modify action potential firing properties in two groups of rat dorsal root ganglion (DRG) neurons, tetrodotoxin-sensitive (TTXs) Na(+) channel-expressing neurons and tetrodotoxin-resistant (TTXr) Na(+) channel-expressing neurons. We found that multiple action potential firing in response to membrane depolarization was suppressed in TTXs neurons but maintained or facilitated in TTXr neurons at cooling temperatures. We showed that cooling temperatures strongly inhibited A-type K(+) currents (IA) and TTXs Na(+) channels but had fewer inhibitory effects on TTXr Na(+) channels and non-inactivating K(+) currents (IK). We demonstrated that the sensitivity of A-type K(+) channels and voltage-gated Na(+) channels to cooling temperatures and their interplay determine somatosensory neuron excitability at cooling temperatures. Our results provide a putative mechanism by which cooling temperatures modify different sensory modalities including pain. 相似文献
2.
3.
4.
The 'functional dyad', a well-defined pair of amino acid residues (basic and hydrophobic residues), is a key molecular determinant present in most animal toxins acting on voltage-gated Kv1 channels. It is increasingly used as a working concept to explain how toxins are able to recognize and block their specific ion channel targets. However, other crucial toxin determinants are emerging and the actual role of this 'functional dyad' ought to be clarified, which is the object of the present mini-review. 相似文献
5.
RIM‐binding proteins recruit BK‐channels to presynaptic release sites adjacent to voltage‐gated Ca2+‐channels
下载免费PDF全文

The active zone of presynaptic nerve terminals organizes the neurotransmitter release machinery, thereby enabling fast Ca2+‐triggered synaptic vesicle exocytosis. BK‐channels are Ca2+‐activated large‐conductance K+‐channels that require close proximity to Ca2+‐channels for activation and control Ca2+‐triggered neurotransmitter release by accelerating membrane repolarization during action potential firing. How BK‐channels are recruited to presynaptic Ca2+‐channels, however, is unknown. Here, we show that RBPs (for RIM‐binding proteins), which are evolutionarily conserved active zone proteins containing SH3‐ and FN3‐domains, directly bind to BK‐channels. We find that RBPs interact with RIMs and Ca2+‐channels via their SH3‐domains, but to BK‐channels via their FN3‐domains. Deletion of RBPs in calyx of Held synapses decreased and decelerated presynaptic BK‐currents and depleted BK‐channels from active zones. Our data suggest that RBPs recruit BK‐channels into a RIM‐based macromolecular active zone complex that includes Ca2+‐channels, synaptic vesicles, and the membrane fusion machinery, thereby enabling tight spatio‐temporal coupling of Ca2+‐influx to Ca2+‐triggered neurotransmitter release in a presynaptic terminal. 相似文献
6.
Das A Pushparaj C Bahí N Sorolla A Herreros J Pamplona R Vilella R Matias-Guiu X Martí RM Cantí C 《Pigment cell & melanoma research》2012,25(2):200-212
The expression of voltage-gated calcium channels (VGCCs) has not been reported previously in melanoma cells in spite of increasing evidence of a role of VGCCs in tumorigenesis and tumour progression. To address this issue we have performed an extensive RT-PCR analysis of VGCC expression in human melanocytes and a range of melanoma cell lines and biopsies. In addition, we have tested the functional expression of these channels using Ca(2+) imaging techniques and examined their relevance for the viability and proliferation of the melanoma cells. Our results show that control melanocytes and melanoma cells express channel isoforms belonging to the Ca(v) 1 and Ca(v) 2 gene families. Importantly, the expression of low voltage-activated Ca(v) 3 (T-type) channels is restricted to melanoma. We have confirmed the function of T-type channels as mediators of constitutive Ca(2+) influx in melanoma cells. Finally, pharmacological and gene silencing approaches demonstrate a role for T-type channels in melanoma viability and proliferation. These results encourage the analysis of T-type VGCCs as targets for therapeutic intervention in melanoma tumorigenesis and/or tumour progression. 相似文献
7.
Shu Jie Li Qing Zhao Qiangjun Zhou Yujia Zhai 《Acta Crystallographica. Section F, Structural Biology Communications》2009,65(3):279-281
The voltage‐gated proton channel Hv1 is essential to proton permeation and contains a voltage‐sensor domain without a pore domain. It contains three predicted domains: an N‐terminal acid and proline‐rich domain, a transmembrane voltage‐sensor domain and a C‐terminal domain that is responsible for the dimeric architecture of Hv1. Here, the C‐terminal domain of the human voltage‐gated proton channel Hv1 (C‐Hv1) was overexpressed in Escherichia coli, purified and crystallized using the hanging‐drop vapour‐diffusion method. The crystals have a tetragonal form and diffraction data were collected to 2.5 Å resolution in‐house. The crystal belongs to space group P41212, with unit‐cell parameters a = b = 37.76, c = 137.52 Å. Structural determination of C‐Hv1 is in progress. 相似文献
8.
9.
10.
11.
Melatonin (MT) may work as a neuromodulator through the associated MT receptors in the central nervous system. Previously, our studies have shown that MT increased the I(K) current via a G protein-related pathway. In the present study, patch-clamp whole-cell recording, transwell migration assays and organotypic cerebellar slice cultures were used to examine the effect of MT on granule cell migration. MT increased the I(K) current amplitude and migration of granule cells. Meanwhile, TEA, the I(K) channel blocker, decreased the I(K) current and slowed the migration of granule cells. Furthermore, the effects of MT on the I(K) current and cell migration were not abolished by pre-incubation with P7791, a specific antagonist of MT(3)R, but were eliminated by the application of the MT(2)R antagonists K185 and 4-P-PDOT. I(K) current and cell migration were decreased by the application of dibutyryl cyclic AMP (dbcAMP), which was in contrast to the MT effect on the I(K) current and cell migration. Incubation with dbcAMP essentially blocked the MT-induced increasing effect. Moreover, incubation of isolated cell cultures in the MT-containing medium also decreased the cAMP immunoreactivity in the granule cells. It is concluded, therefore, that I(K) current, downstream of a cAMP transduction pathway, mediates the migration of rat cerebellar granule cells stimulated by MT. 相似文献
12.
Scolopendra subspinipes mutilans, also known as Chinese red‐headed centipede, is a venomous centipede from East Asia and Australasia. Venom from this animal has not been researched as thoroughly as venom from snakes, snails, scorpions, and spiders. In this study, we isolated and characterized SsmTx‐I, a novel neurotoxin from the venom of S. subspinipes mutilans. SsmTx‐I contains 36 residues with four cysteines forming two disulfide bonds. It had low sequence similarity (<10%) with other identified peptide toxins. By whole‐cell recording, SsmTx‐I significantly blocked voltage‐gated K+ channels in dorsal root ganglion neurons with an IC50 value of 200 nM, but it had no effect on voltage‐gated Na+ channels. Among the nine K+ channel subtypes expressed in human embryonic kidney 293 cells, SsmTx‐I selectively blocked the Kv2.1 current with an IC50 value of 41.7 nM, but it had little effect on currents mediated by other K+ channel subtypes. Blockage of Kv2.1 by SsmTx‐I was not associated with significant alteration of steady‐state activation, suggesting that SsmTx‐I might act as a simple inhibitor or channel blocker rather than a gating modifier. Our study reported a specific Kv2.1‐blocker from centipede venom and provided a basis for future investigations of SsmTx‐I, for example on structure–function relationships, mechanism of action, and pharmacological potential. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
13.
Gustavo Arruda Bezerra Elena Dobrovetsky Alma Seitova Sirano Dhe‐Paganon Karl Gruber 《Acta Crystallographica. Section F, Structural Biology Communications》2012,68(2):214-217
Dipeptidyl peptidase 10 (DPP10, DPPY) is an inactive peptidase associated with voltage‐gated potassium channels, acting as a modulator of their electrophysiological properties, cell‐surface expression and subcellular localization. Because potassium channels are important disease targets, biochemical and structural characterization of their interaction partners was sought. DPP10 was cloned and expressed using an insect‐cell system and the protein was purified via His‐tag affinity and size‐exclusion chromatography. Crystals obtained by the sitting‐drop method were orthorhombic, belonging to space group P212121 with unit‐cell parameters a = 80.91, b = 143.73, c = 176.25 Å. A single solution with two molecules in the asymmetric unit was found using the structure of DPP6 (also called DPPX; PDB entry 1xfd ) as the search model in a molecular replacement protocol. 相似文献
14.
The inward K+ channels (IKin) of guard cells are inhibited upon application of abscisic acid (ABA). It has been postulated that IKin inhibition requires an elevation in cytosolic free Ca2+ levels ([Ca2+]c) because: (i) experimental increases in [Ca2+] c can mimic the ABA effect, and; (ii) ABA can trigger an elevation of [Ca2+]c in guard cells. However, not all guard cells respond to ABA with a [Ca2+]c increase, and the magnitude of the increases that do occur is variable. Therefore, an obligate role for Ca2+ in the regulation of downstream effectors of ABA response, such as the IKin channels, remains in question. In this study, we developed a methodology for simultaneous patch clamping and confocal ratiometric Ca2+ imaging of Vicia faba L. guard-cell protoplasts. This allowed us to directly assess the relationship between ABA-induced changes in [Ca2+]c and IKin inhibition. In the presence of extracellular Ca2+, the extent of [Ca2+]c elevation correlated with the extent of IKin inhibition. However, upon chelation of either extracellular Ca2+, [Ca2+]c, or both, extracellular Ca2+ and [Ca2+]c, [Ca2+]c elevation did not occur in response to ABA yet IKin currents were still strongly inhibited. These data illustrate that Ca2+-independent regulation is involved in ABA-inhibition of stomatal opening processes. Received: 17 September 1999 / Accepted: 26 October 1999 相似文献
15.
Gutiérrez-Martín Y Martín-Romero FJ Henao F Gutiérrez-Merino C 《Journal of neurochemistry》2005,92(4):973-989
Exposure of cerebellar granule neurones in 25 mm KCl HEPES-containing Locke's buffer (pH 7.4) to 50-100 microm SIN-1 during 2 h decreased the steady-state free cytosolic Ca2+ concentration ([Ca2+]i) from 168 +/- 33 nm to 60 +/- 10 nm, whereas exposure to > or = 0.3 mm SIN-1 produced biphasic kinetics: (i) decrease of [Ca2+]i during the first 30 min, reaching a limiting value of 75 +/- 10 nm (due to inactivation of L-type Ca2+ channels) and (ii) a delayed increase of [Ca2+]i at longer exposures, which correlated with SIN-1-induced necrotic cell death. Both effects of SIN-1 on [Ca2+]i are blocked by superoxide dismutase plus catalase and by Mn(III)tetrakis(4-benzoic acid)porphyrin chloride. Supplementation of Locke's buffer with catalase before addition of 0.5-1 mm SIN-1 had no effect on the decrease of [Ca2+]i but further delayed and attenuated the increase of [Ca2+]i observed after 60-120 min exposure to SIN-1 and also protected against SIN-1-induced necrotic cell death. alpha-Tocopherol, the potent NMDA receptor antagonist (+)-MK-801 and the N- and P-type Ca2+ channels blocker omega-conotoxin MVIIC had no effect on the alterations of [Ca2+]i upon exposure to SIN-1. However, inhibition of the plasma membrane Ca2+ ATPase can account for the increase of [Ca2+]i observed after 60-120 min exposure to 0.5-1 mm SIN-1. It is concluded that L-type Ca2+ channels are a primary target of SIN-1-induced extracellular nitrosative/oxidative stress, being inactivated by chronic exposure to fluxes of peroxynitrite of 0.5-1 microm/min, while higher concentrations of peroxynitrite and hydrogen peroxide are required for the inhibition of the plasma membrane Ca2+ ATPase and induction of necrotic cell death, respectively. 相似文献
16.
17.
18.
Yi‐zhou Tan Dong‐dong Fei Xiao‐ning He Ji‐min Dai Rong‐chen Xu Xin‐yue Xu Jun‐jie Wu Bei Li 《Cell proliferation》2019,52(4)
L‐type voltage‐gated calcium ion channels (L‐VGCCs) have been demonstrated to be the mediator of several significant intracellular activities in excitable cells, such as neurons, chromaffin cells and myocytes. Recently, an increasing number of studies have investigated the function of L‐VGCCs in non‐excitable cells, particularly stem cells. However, there appear to be no systematic reviews of the relationship between L‐VGCCs and stem cells, and filling this gap is prescient considering the contribution of L‐VGCCs to the proliferation and differentiation of several types of stem cells. This review will discuss the possible involvement of L‐VGCCs in stem cells, mainly focusing on osteogenesis mediated by mesenchymal stem cells (MSCs) from different tissues and neurogenesis mediated by neural stem/progenitor cells (NSCs). Additionally, advanced applications that use these channels as the target for tissue engineering, which may offer the hope of tissue regeneration in the future, will also be explored. 相似文献
19.
20.
Alberto Martínez-Serrano Elena Bogónez Javier Vitórica Jorgina Satrústegui 《Journal of neurochemistry》1989,52(2):576-584
The voltage-dependent calcium uptake in rat brain synaptosomes was measured under conditions in which [Ca2+]o/[Na+]i exchange was minimized to characterize the voltage-sensitive calcium channels from rats of different ages. In solutions of CaCl2 concentrations of less than 500 microM, the initial (5-s) calcium uptake declined by approximately 20-50% in 12- and 24-month-old rats relative to 3-month-old adults. Depolarization of synaptosomes from 3-month-old rats in a calcium-free medium or in the presence of 0.5 mM CaCl2 led to an exponential decline of the calcium uptake rate after 20 s (voltage- or voltage-and-calcium-dependent inactivation) to approximately 66 and 34% of the initial value with a t1/2 of 1.6 or 0.7 s, respectively. The presence of 1 microM nifedipine resulted in a 15-25% reduction of 45Ca2+ uptake rates, which appeared to affect noninactivating calcium channels, but addition of the calcium channel agonist Bay K 8644 was without effect. In 24-month-old rats, inactivation of 45Ca2+ uptake in calcium-free media was nondetectable, and in the presence of 0.5 mM CaCl2, the rate and extent of inactivation were also much lower than in 3-month-old animals (the t1/2 was 0.9 s, and the calcium uptake rate at 20 s was 55% of its initial value). Moreover, the presence of 1 microM nifedipine was without effect on initial calcium uptake or inactivation in synaptosomes from 24-month-old rats. These results indicate that the decrease in calcium channel-mediated 45Ca2+ uptake involves an inhibition or block of both dihydropyridine-resistant and -sensitive calcium channels.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献