共查询到20条相似文献,搜索用时 0 毫秒
1.
Expression of an estrogen receptor alpha (ER) transgene in hormone independent breast cancer and normal breast epithelial cells arrests cell cycling when estradiol is added. Although endogenously expressed ER does not typically affect estradiol-induced cell cycling of hormone dependent breast cancer cells, we observed that elevated expression of a green fluorescent protein fused to ER (GFP-ER) hindered entry of estrogen treated MCF-7 cells into S phase of the cell cycle. In analyses of key cell-cycle regulating proteins, we observed that GFP-ER expression had no affect on the protein levels of cyclin D1, cyclin E, or p27, a cyclin dependent kinase (Cdk) inhibitor. However, at 24 h, p21 (Waf1, Cip1; a Cdk2 inhibitor) protein remained elevated in the high GFP-ER expressing cells but not in non-GFP-ER expressing cells. Elevated expression of p21 inhibited Cdk2 activity, preventing cells from entering S phase. The results show that elevated levels of ER prevented the down-regulation of p21 protein expression, which is required for hormone responsive cells to enter S phase. 相似文献
2.
Gaschott T Wächtershäuser A Steinhilber D Stein J 《Biochemical and biophysical research communications》2001,283(1):80-85
Butyrate, a short-chain fatty acid produced in the colon, as well as its prodrug tributyrin, reduce proliferation and increase differentiation of colon cancer cells. p21(Waf1/Cip1) and p27(Kip1) are negative regulators of cell cycle and are thought to have a key function in the differentiation of various cell lines. We studied the effects of butyrate on differentiation, VDR expression, as well as on p21(Waf1/Cip1) and p27(Kip1) expression in human colon cancer cells (Caco-2). Butyrate induced cell differentiation, which was further enhanced after addition of 1,25-dihydroxycholecalciferol. Synergistic effect of butyrate and dihydroxycholecalciferol in Caco-2 cells was due to butyrate-induced overexpression of VDR. While butyrate as well as dihydroxycholecalciferol increased p21(Waf1/Cip1) and p27(Kip1) expression, in contrast combined exposure of butyrate and dihydroxycholecalciferol resulted in a synergistic amplification of p21(Waf1/Cip1), but not of p27(Kip1) expression. These data imply that butyrate selectively increases p21(Waf1/Cip1) expression via upregulation of VDR in Caco-2 cells. 相似文献
3.
《Cell cycle (Georgetown, Tex.)》2013,12(24):2899-2902
Inactivation of the cyclin-dependent kinase (CDK) inhibitor p21Waf1/Cip1 (CDKN1; hereafter p21) has previously been implicated in the induction of numerical centrosome alterations. It is unclear, however, whether p21 deficiency deregulates the centrosome duplication cycle itself or causes an accumulation of centrosomes due to cell division failure and/or polyploidization. Using a novel marker for maternal centrioles, Cep170, we show here that knock-down of p21 protein expression in murine myeloblasts can stimulate excessive centriole numbers in the presence of only one or two mature centrioles. These results indicate that p21 deficiency can trigger a bona fide overduplication of centrioles and that aberrant centrosome numbers cannot solely be explained by polyploidization as suggested by previous studies. Our findings underscore that impaired p21 expression may function as a driving force for chromosomal instability and highlight the importance of markers for maternal centrioles such as Cep170 to elucidate the pathogenesis of numerical centriole aberrations in tumor cells. 相似文献
4.
5.
Wong GA Tang V El-Sabeawy F Weiss RH 《American journal of physiology. Endocrinology and metabolism》2003,284(5):E972-E979
Bone-morphogenetic proteins (BMP)-2 and -7, multifunctional members of the transforming growth factor (TGF)-beta superfamily with powerful osteoinductive effects, cause cell cycle arrest in a variety of transformed cell lines by activating signaling cascades that involve several cyclin-dependent kinase inhibitors (CDKIs). CDKIs in the cip/kip family, p21(Cip1/Waf1) and p27(Kip1), have been shown to negatively regulate the G1 cyclins and their partner cyclin-dependent kinase proteins, resulting in BMP-mediated growth arrest. Bone morphogens have also been associated with antiproliferative effects in vascular tissue by unknown mechanisms. We now show that BMP-2-mediated inhibition of platelet-derived growth factor (PDGF)-stimulated human aortic smooth muscle cell (HASMC) proliferation is accompanied by increased levels of p21 protein. Antisense oligodeoxynucleotides specific for p21 attenuate BMP-2-induced inhibition of proliferation when transfected into HASMCs, demonstrating that BMP-2 inhibits PDGF-stimulated proliferation of HASMCs through induction of p21. Whether p21-mediated induction of cell cycle arrest by BMP-2 sets the stage for osteogenic differentiation of vascular smooth muscle cells, ultimately leading to vascular mineralization, remains to be investigated. 相似文献
6.
7.
8.
A PstI polymorphism in the 3 flanking region of the p21CiP1/Waf1 cyclin-dependent kinase inhibitor gene is described. DNA sequencing analysis identified a CT base substitution in the 3 flanking region of the gene. This substitution leads to the destruction of a PstI site and results in a biallelic DNA polymorphism. This restriction fragment length polymorphism (RFLP) provides the first known genetic marker for this cell cycle regulatory gene. 相似文献
9.
10.
Samantha Cialfi Rocco Palermo Sonia Manca Carlo De Blasio Paula Vargas Romero Saula Checquolo 《Cell cycle (Georgetown, Tex.)》2014,13(13):2046-2245
Notch signaling plays a complex role in carcinogenesis, and its signaling pathway has both tumor-suppressor and oncogenic components. In this study we investigated the effects of reactive oxygen species (ROS) on Notch1 signaling outcome in keratinocyte biology. We demonstrate that Notch1 function contributes to the arsenic-induced keratinocyte transformation. We found that acute exposure to arsenite increases oxidative stress and inhibits proliferation of keratinocyte cells by upregulation of p21waf1/Cip1. The necessity of p21waf1/Cip1 for arsenite-induced cell death was demonstrated by targeted downregulation of p21waf1/Cip1 by using RNA interference. We further demonstrated that on acute exposure to arsenite, p21waf1/Cip1 is upregulated and Notch1 downmodulated, whereas on chronic exposure to arsenite, malignant progression of arsenite-treated keratinocytes cells was accompanied by regained expression and activity of Notch1. Notch1 activity in arsenite-transformed keratinocytes inhibits arsenite-induced upregulation of p21waf1/Cip1 by sustaining c-myc expression. We further demonstrated that c-myc collaborates with Nrf2, a key regulator for the maintenance of redox homeostasis, to promote metabolic activities that support cell proliferation and cytoprotection. Therefore, Notch1-mediated repression of p21waf1/Cip1 expression results in the inhibition of cell death and keratinocytes transformation. Our results not only demonstrate that sustained Notch1 expression is at least one key event implicated in the arsenite human skin carcinogenic effect, but also may provide mechanistic insights into the molecular aspects that determine whether Notch signaling will be either oncogenic or tumor suppressive. 相似文献
11.
The intracellular localization of signaling proteins is critical in directing their interactions with both upstream and downstream signaling cascade components. While initially described as a cyclin kinase inhibitor, p21Waf1/Cip1 has since been shown to have bimodal effects on cell cycle progression and cell proliferation, and evidence is emerging that intracellular localization of this protein plays a role in directing its signaling properties by dictating its interactions with downstream molecules. Since we have previously demonstrated a pro-apoptotic and cell cycle inhibitory effect of p21 attenuation after transfection of antisense p21 oligodeoxynucleotides (ODN) in several cell lines, we asked whether cytosolic p21 mediates a positive effect on vascular smooth muscle (VSM) cell cycle transit. We now show that transfection of a nuclear-localization signal deficient (DeltaNLS) p21 construct into VSM cells results in increased cytosolic levels of p21 and causes increased cell cycle transit as measured by [3H]thymidine incorporation. Thus, at least in VSM cells, cytosolic localization of p21 is a means by which this signaling protein transmits pro-mitogenic signals to the proteins responsible for G1/S transition. Furthermore, compartmentalization of p21 may help explain the biphasic nature of p21 in a variety of cell types and may lead to therapeutic advances directed at modulating pathologic cell growth in vascular diseases and cancer. 相似文献
12.
13.
14.
15.
16.
Derjuga A Richard C Crosato M Wright PS Chalifour L Valdez J Barraso A Crissman HA Nishioka W Bradbury EM Th'ng JP 《The Journal of biological chemistry》2001,276(41):37815-37820
Sodium butyrate induced cell cycle arrest in mammalian cells through an increase in p21Waf1/Cip1, although another study showed that this arrest is related to pRB signaling. We isolated variants of HeLa cells adapted to growth in 5 mm butyrate. One of these variants, clone 5.1, constitutively expressed elevated levels of p21Waf1/Cip1 when incubated in regular growth medium and in the presence of butyrate. Despite this elevated level of p21Waf1/Cip1, the cells continue to proliferate, albeit at a slower rate than parental HeLa cells. Western blot analyses showed that other cell cycle regulatory proteins were not up-regulated to compensate for the elevated expression of p21Waf1/Cip1. However, cyclin D1 was down-regulated by butyrate in HeLa cells but not in clone 5.1. We conclude that continued expression of cyclin D1 allowed clone 5.1 to grow in the presence of butyrate and elevated levels of p21Waf1/Cip1. 相似文献
17.
I Yoshida K Oka R Hidajat M Nagano-Fujii S Ishido H Hotta 《Microbiology and immunology》2001,45(10):689-697
18.
c-Myc suppresses p21WAF1/CIP1 expression during estrogen signaling and antiestrogen resistance in human breast cancer cells 总被引:8,自引:0,他引:8
Estrogen rapidly induces expression of the proto-oncogene c-myc. c-Myc is required for estrogen-stimulated proliferation of breast cancer cells, and deregulated c-Myc expression has been implicated in antiestrogen resistance. In this report, we investigate the mechanism(s) by which c-Myc mediates estrogen-stimulated proliferation and contributes to cell cycle progression in the presence of antiestrogen. The MCF-7 cell line is a model of estrogen-dependent, antiestrogen-sensitive human breast cancer. Using stable MCF-7 derivatives with inducible c-Myc expression, we demonstrated that in antiestrogen-treated cells, the elevated mRNA and protein levels of p21(WAF1/CIP1), a cell cycle inhibitor, decreased upon either c-Myc induction or estrogen treatment. Expression of p21 blocked c-Myc-mediated cell cycle progression in the presence of antiestrogen, suggesting that the decrease in p21 is necessary for this process. Using RNA interference to suppress c-Myc expression, we further established that c-Myc is required for estrogen-mediated decreases in p21(WAF1/CIP1). Finally, we observed that neither c-Myc nor p21(WAF1/CIP1) is regulated by estrogen or antiestrogen in an antiestrogen-resistant MCF-7 derivative. The p21 levels in the antiestrogen-resistant cells increased when c-Myc expression was suppressed, suggesting that loss of p21 regulation was a consequence of constitutive c-Myc expression. Together, these studies implicate p21(WAF1/CIP1) as an important target of c-Myc in breast cancer cells and provide a link between estrogen, c-Myc, and the cell cycle machinery. They further suggest that aberrant c-Myc expression, which is frequently observed in human breast cancers, can contribute to antiestrogen resistance by altering p21(WAF1/CIP1) regulation. 相似文献
19.